

INTRODUCTION

It is proposed to construct a 2,173 SF Dunkin' restaurant with drive-through (The Project) on a parcel of land currently developed with a vacated Friendly's restaurant, located along the west side of Godwin Avenue (CR 84) between Princeton Avenue and Cross Avenue in the Borough of Midland Park, Bergen County, New Jersey, see Figure 1, in Appendix A. The site is designated as Block 20.10 - Lot 5.01 on the Borough Tax Maps. Access to the site is currently provided via one (1) full movement driveway along Godwin Avenue. It is proposed to close the existing access point and construct one (1) ingress only driveway and one (1) egress only driveway along Godwin Avenue. Parking will be provided via twelve (12) on-site parking spaces.

Dynamic Traffic, LLC has been retained to prepare this study to assess the traffic impact associated with the construction of The Project on the adjacent roadway network. This study documents the methodology, analyses, findings and conclusions of our study and includes:

- A detailed field inspection was conducted to obtain an inventory of existing roadway geometry, traffic control, and location and geometry of existing driveways and intersections.
- Existing traffic data was collected via manual turning movement (MTM) counts during the weekday AM, weekday PM and Saturday Midday peak periods at the intersections of Godwin Avenue with the north Salon ID driveway and Godwin Avenue with the south Salon ID driveway/Friendly's driveway.
- Projections of traffic to be generated by The Project were prepared utilizing trip generation data as published by the Institute of Transportation Engineers. Site traffic was then assigned to the adjacent street system based upon the anticipated directional distribution.
- Capacity analyses were conducted for the Existing, No Build, and Build conditions for the study intersections and the site driveways.
- The proposed site driveways were inspected for adequacy of geometric design, spacing and/or alignment to streets and driveways on the opposite side of the street, relationship to other driveways adjacent to the development, and conformance with accepted design standards.
- The parking layout and supply was assessed based on accepted design standards and demand experienced at similar developments.

EXISTING CONDITIONS

A review of the existing roadway conditions near the proposed site was conducted to provide the basis for assessing the traffic impact of the development. This included field investigations of the surrounding roadways and intersections, collection of traffic volume data, and extensive analyses.

Existing Roadway Conditions

The following are descriptions of the roadways in the study area:
Godwin Avenue (CR 84) is an Urban Principal Arterial roadway under the jurisdiction of Bergen County. In the vicinity of the site the posted speed limit is 30 MPH and the roadway provides one travel lane in each direction with a general north/south orientation. On-street parking is permitted along portions of both sides of the roadway while curb and sidewalk is provided along both sides of the roadway. Godwin Avenue provides a straight horizontal alignment and an uphill vertical alignment from south to north. The land uses along Godwin Avenue in the vicinity of The Project are primarily commercial.

Existing Traffic Volumes

Manual turning movement (MTM) counts were originally conducted on Wednesday, October 21, 2020 between 7:00 - 9:00 AM and on Saturday, October 24, 2020 between 11:00 AM - 2:00 PM at the intersections of Godwin Avenue with the north Salon ID driveway and Godwin Avenue with the south Salon ID driveway/Friendly's driveway. Supplemental MTM counts were conducted on Tuesday, March 16, 2021 between 4:30-6:30 PM at the same locations. In addition, automatic traffic recorder (ATR) counts were conducted along Godwin Avenue south of Erie Avenue from Wednesday, October 21, 2020 to Saturday, October 24, 2020 for purposes of normalizing the MTM count data.

It should be noted that traffic impacts associated with the COVID-19 pandemic were in effect as of the time of the traffic counts. As a result, current traffic volumes on the surrounding roadways are atypically low at this time and would not be representative of "existing" traffic conditions. Therefore, historical traffic volume data has been reviewed and compared with current traffic conditions.

ATR counts were previously conducted by this firm in October 2016 to the south of Erie Avenue. In order to better represent 2020 traffic volumes, the 2016 ATR volumes during the studied peak periods were grown utilizing an annual growth rate contained within the NJDOT Annual Background Growth Rate Table, which indicates a growth rate of 1.5% per year, for a period of four (4) years. The ATR traffic volumes representative of "existing" conditions were then compared to the October 2020 ATR volumes. Adjustment factors of $1.42,1.29$ and 1.22 were then calculated and applied to the weekday morning, weekday evening and Saturday midday counts, respectively, to develop traffic volumes that best represent "existing" conditions at the study intersections.

Review of the collected traffic data reveals that the weekday morning peak street hour (PSH) occurs between 7:45-8:45 AM, the weekday evening PSH occurs between 4:45-5:45 PM and the Saturday midday PSH occurs between 11:30 AM - 12:30 PM. Figure 2, located in Appendix A, shows the existing peak hour traffic volumes at the study intersections. All MTM and ATR counts are contained in Appendix B.

Existing Capacity Analysis

The methodology utilized in the capacity analyses is described in the Highway Capacity Manual 2010, published by the Transportation Research Board. In general, the term Level of Service (LOS) is used to provide a "qualitative" evaluation of capacity based upon certain "quantitative" calculations related to empirical values, such as traffic volume and intersection control.

An unsignalized (STOP sign controlled) driveway or side street along a through route is seldom critical from an overall capacity standpoint, however, it may be of great significance to the capacity of the minor cross-route, and it may influence the quality of traffic flow on both. When analyzing an unsignalized intersection, it is assumed that both the major street through and right turn movements are unimpeded and have the right-of-way over all side street traffic and left turns from the major street. All other turning movements in the intersection cross, merge with, or are otherwise impeded by major street movements. Traffic delays at unsignalized intersections are determined by sequentially processing these impeded movements. Table I describes the Level of Service ranges for unsignalized (stop controlled) intersections.

Table I
Level of Service Criteria
for Unsignalized Intersections

Level of Service	Average Control Delay (seconds per vehicle)
A	0.0 to 10.0
B	10.1 to 15.0
C	15.1 to 25.0
D	25.1 to 35.0
E	35.1 to 50.0
F	greater than 50.0

It should be noted that the analyses within the Highway Capacity Manual assume a random arrival for all the movements, which may not be the case if an adjacent traffic signal is present that platoons vehicles.

All capacity analyses were performed utilizing the Synchro software package (Synchro 11). Table II summarizes the existing Levels of Service (LOS) and delays. All capacity analysis calculation worksheets are contained in Appendix C.

Table III
Existing Levels of Service

Intersection	Direction/ Movement		AM PSH	PM PSH	SAT PSH
	WB	LR	B (14)	C (21)	B (15)
	SB	LT	A (9)	A (9)	A (9)
Godwin Avenue and South Salon Driveway/Friendly's Driveway	EB	LTR	-	-	-
	WB	LTR	C (20)	C (25)	C (15)
	NB	LTR	-	-	-
	SB	LTR	A (9)	A (9)	A (9)

A (\#) - Unsignalized Intersection Level of Service (seconds of delay per vehicle)
The following are discussions pertaining to each of the existing intersections analyzed. All capacity analysis calculation worksheets are contained in Appendix C.

Godwin Avenue and North Salon Driveway

The north salon driveway intersects Godwin Avenue to form an unsignalized T-intersection with the salon driveway under stop control. The northbound and southbound approaches of Godwin Avenue provide a shared through/right turn lane and a shared left turn/through lane, respectively. The westbound approach of the salon driveway provides a single lane for left and right turns.

A review of the existing analysis reveals that the individual intersection movements operate at Level of Service "C" or better during the analyzed peak periods. See Table II for the individual movement Levels of Service and delays.

Godwin Avenue and South Salon Driveway/Friendly's Driveway

The south salon driveway/Friendly's driveway intersects Godwin Avenue to form an unsignalized four-leg intersection with the salon driveway/Friendly's driveway under stop control. The northbound and southbound approaches of Godwin Avenue each provide a shared left turn/through/right turn lane. The eastbound approach of the Friendly's driveway provides a shared left turn/through/right turn lane. The westbound approach of the salon driveway provides a shared left turn/through/right turn lane.

A review of the existing analysis reveals that the individual intersection movements operate at Level of Service "C" or better during the analyzed peak periods. See Table II for the individual movement Levels of Service and delays.

FUTURE CONDITIONS

Traffic volumes and operational analyses were developed for both the Future No Build and Build conditions. The No Build conditions provide a baseline for assessing the impact of site development traffic on the roadway system. The process of developing the No Build and Build traffic volumes and the subsequent analyses is outlined below.

Regardless of whether the subject site is developed or not, traffic volumes on the surrounding roadways are expected to increase as a result of developments throughout the region. A growth rate for roadways within the study area was obtained from the NJDOT Annual Background Growth Rate Table, which indicates a growth rate of 1.5% per year.

Future No Build traffic volumes were developed by applying the background growth rate of 1.5% for two (2) years to the study area existing traffic volumes. Figure 4, in Appendix A, shows the Future No Build traffic volumes.

Traffic Generation

Projections of future traffic volumes were developed utilizing data as published in the Institute of Transportation Engineers (ITE) publication Trip Generation, 10 ${ }^{\text {dh }}$ Edition for Land Use Code (LUC) 937 - Coffee/Donut Shop with Drive-Through Window.

According to studies conducted by ITE and NJDOT, traffic associated with LUC 937 is not 100% newly generated. Rather, a portion of the traffic is diverted from the existing traffic stream on the adjacent roadway network. This is because the proposed Dunkin' is not a destination land use, instead patrons stop on their way to/from other locations such as home or work. While it is noted that NJDOT identifies 63% and 50% passby traffic percentages for LUC 937, conservatively the passby percentages for LUC 934 - Fast-Food Restaurant with Drive-Thru were utilized for analysis purposes. ITE identifies $49 \%, 50 \%$ and 37% passby traffic percentages for LUC 934 which were used during the weekday morning, weekday evening and Saturday midday peak hours, respectively. Table III below details the traffic volumes associated with the subject project taking into account the passby credits.

Table III
Trip Generation Considering Passby Traffic

Trip Type		AM PSH			PM PSH			SAT PSH		
		In	Out	Total	In	Out	Total	In	Out	Total
2,173 SF Dunkin' with Drive-Thru Window	Total	98	95	193	47	47	94	96	95	191
	Passby	48	47	95	24	23	47	36	35	71
	New (Primary)	50	48	98	23	24	47	60	60	120

As previously noted, the site is currently developed with a vacated Friendly's restaurant. Although the restaurant is currently vacant, there is still trip generation potential associated with the existing development if the building became occupied. Therefore, the trip generation potential of the existing site was developed utilizing LUC 932 - High-Turnover (Sit-Down) Restaurant. Figure 3, located in Appendix A, shows the peak hour traffic volumes at the study intersections associated with the reoccupation of the existing Friendly's restaurant. Table IV below provides a comparison between the primary trips associated with the existing site and the primary trips projected for the proposed development based on ITE data.

Table IV
Existing vs. Proposed Primary Trip Generation Comparison

Trip Type	AM PSH			PM PSH			SAT PSH		
	In	Out	Total	In	Out	Total	In	Out	Total
Existing 2,530 SF Friendly's Restaurant	14	11	25	9	5	14	14	14	28
Proposed 2,173 SF Dunkin' with Drive-Thru Window	50	48	98	23	24	47	60	60	120
Difference	+36	+37	+73	+14	+19	+33	+46	+46	+92

As shown in Table IV above, it is anticipated that 73 additional primary trips during the weekday morning peak hour, 33 additional primary trips during the weekday evening peak hour and 92 additional primary trips during the Saturday midday peak hour are anticipated to access the site from the adjacent roadway network with the proposed redevelopment.

Once the magnitude of traffic to be generated by the site is known, it is necessary to assign that traffic to the adjacent street system. The distribution of new traffic to the surrounding roadways is based on the location of primary arterial roadways, major signalized intersections and existing traffic patterns. Located in Appendix A, Figure 5 illustrates the distribution of primary site generated trips, Figure 6 illustrates the primary site generated volumes, Figure 7 illustrates the distribution of passby site generated trips, Figure 8 illustrates the passby site generated volumes and Figure 9 illustrates the total site generated volumes assigned to the study area network. The site generated volumes were added to the No Build traffic volumes to generate the Build traffic volumes, which are shown in Figure 10.

Future Capacity Analysis

Operational conditions at the study intersections were analyzed under the No Build and Build conditions and are summarized in Table V below.

Table V
Future Build Levels of Service

Intersection	Direction/ Movement		AM PSH		PM PSH		SAT PSH	
			No Build	Build	No Build	Build	No Build	Build
Godwin Avenue and North Salon Driveway/North Site Driveway	WB	LR	B (14)	-	C (21)	-	C (15)	-
		LTR	-	C (15)	-	C (23)	-	C (17)
	NB	LTR	-	A (9)	-	A (9)	-	A (10)
	SB	LT	A (9)	-	A (9)	-	A (9)	-
		LTR	-	A (9)	-	A (9)	-	A (9)
Godwin Avenue and South Salon Driveway/South Site Driveway	EB	LTR	C (21)	D (28)	C (23)	D (26)	D (26)	E (45)
	WB	LTR	C (22)	-	D (27)	-	C (16)	-
		LR	-	C (23)	-	D (28)	-	C (17)
	NB	LTR	A (9)	-	A (9)	-	A (9)	-
	SB	LTR	A (9)	-	A (9)	-	A (9)	-
		LT	-	A (9)	-	A (9)	-	A (9)

A (\#) - Unsignalized Intersection Level of Service (seconds of delay per vehicle)

Godwin Avenue and North Salon Driveway/North Site Driveway

The north site driveway is proposed to intersect Godwin Avenue opposite the north salon driveway to form an unsignalized four-leg intersection with the salon driveway under stop control. The northbound and southbound approaches of Godwin Avenue will each provide a shared left turn/through/right turn lane. The westbound approach of the salon driveway will provide a shared left turn/through/right turn lane. The site driveway will provide a single westbound lane away from the intersection. It should also be noted that the existing crosswalk across Godwin Avenue will be relocated slightly south so as not to conflict with the proposed driveway location.

As designed, the individual intersection movements are anticipated to operate at Level of Service "C" or better during the analyzed peak hours. See Table V for the individual movement Levels of Service and delays.

Godwin Avenue and South Salon Driveway/South Site Driveway

The south site driveway is proposed to intersect Godwin Avenue opposite the south salon driveway to form an unsignalized four-leg intersection with the site driveway and the salon driveway under stop control. The northbound and southbound approaches of Godwin Avenue will provide a shared through/right turn lane and a shared left turn/through lane, respectively. The eastbound approach of the site driveway will provide a shared left turn/through/right turn lane. The westbound approach of the salon driveway will provide a single lane for left and right turns.

As designed, the individual intersection movements are anticipated to operate at Level of Service "E" or better during the analyzed peak hours. See Table V for the individual movement Levels of Service and delays.

SITE PLAN

Site Access and Circulation

The site plan was reviewed with respect to the site access and on-site circulation design. As noted previously, access to The Project will be provided via one (1) ingress only driveway and one (1) egress only driveway along Godwin Avenue.

The newly constructed parking lot will be serviced by a single one-way parking aisle with a width of 18 feet, which meets the minimum Ordinance requirement and is in compliance with accepted engineering design standards. The access aisle will allow for 45 -degree angled parking as well as parallel parking. The drive-thru will operate in a counterclockwise direction with the ability to stack nine (9) cars in the drive-thru lane with an additional capacity of six (6) cars in the mobile order lane. The Borough of Midland Park Ordinance also states that any drive-through or drive-up windows shall have a minimum queuing line length of 150 feet from center of the first service area or window. The site as proposed provides a queuing line length of 200 feet which satisfies the Ordinance requirements. As such, this access configuration is sufficient to accommodate the traffic volumes anticipated for The Project.

Parking

The Borough of Midland Park Ordinance sets forth a parking requirement of 2 parking spaces per service station, 1 parking space per every 2 seats and 1 parking space per 250 SF for quick service restaurant uses. This equates to a parking requirement of 23 spaces for the proposed 2,173 SF Dunkin' coffee shop with drive-thru window and 8 seats. The site as proposed provides 12 parking spaces, therefore the Ordinance requirements are not met and a variance is required.

It should be noted that an Operational Characteristics Study has been conducted by Dynamic Traffic for standalone coffee/donut shops with drive-throughs in northern New Jersey. Based upon this study of three (3) similar developments, a coffee/donut shop with drive-through generates an average peak parking demand of 6.32 spaces per $1,000 \mathrm{SF}$. This equates to a parking demand of 13 spaces.

Furthermore, it is our experience that approximately 70\% of traffic generated by Dunkin' utilize the drive-thru system and do not park, thus reducing the actual parking demand for the site. The proposed Dunkin' will also be high-turnover in nature, meaning the parking spaces will only be occupied for a short period of time. Therefore, it is expected that customers wishing to park and walk into the Dunkin' to purchase their items will not have difficulty finding an available parking space. As such, the proposed parking supply of 12 spaces will be sufficient to support the anticipated demand of the project given the above factors.

It is proposed to provide angled parking stalls with dimensions of 9 ' $x 18^{\prime}$ and parallel parking stalls with dimensions of 9 ' $x 24$, which meets the minimum Ordinance requirement and is in compliance with accepted engineering design standards.

FINDINGS \& CONCLUSIONS

Findings

Based upon the detailed analyses as documented herein, the following findings are noted:

- The proposed $2,173 \mathrm{SF}$ Dunkin' with drive-through window is projected to generate 36 entering trips and 37 exiting trips during the weekday morning peak hour, 14 entering trips and 19 exiting trips during the weekday evening peak hour and 46 entering trips and 46 exiting trips during the Saturday midday peak hour that are "new" to the adjacent roadway network when compared to the existing Friendly's restaurant.
- Access to the site will be provided via one (1) ingress only driveway and one (1) egress only driveway along Godwin Avenue.
- As designed, the individual intersection movements of Godwin Avenue and the north salon driveway/north site driveway are anticipated to operate at Level of Service "C" or better during the studied peak hours.
- As designed, the individual intersection movements of Godwin Avenue and the south salon driveway/south site driveway are anticipated to operate at Level of Service "E" or better during the studied peak hours.
- As proposed, The Project's site driveways and internal circulation have been designed to provide for safe and efficient movement of vehicles on-site.
- The proposed parking supply and design is sufficient to support the projected demand.

Conclusions

Based upon our Traffic Impact Study as detailed in the body of this report, it is the professional opinion of Dynamic Traffic, LLC that the adjacent street system of the Borough of Midland Park and Bergen County will not experience any significant degradation in operating conditions with the construction of The Project. The site driveways are located to provide safe and efficient access to the adjacent roadway system. The site plan as proposed provides for good circulation throughout the site and provides adequate parking to accommodate The Project's needs.

Appendix A
 Volume Figures

Appendix B
Traffic Counts

D ynamic Traffic, LLC
 1904 M ain Street, Lake Como, NJ 07719
 245 M ain Street - Suite 110, Chester, NJ 07930
 732-681-0760

E/W: Salon ID Driveways
N/S: Godwin Ave
Town/County: Midland Park/Bergen
Job \#: 3486-99-001T

File Name : Godwin Ave \& Commercial Driveways - AM
Site Code : 00000000
Start Date : 10/21/2020
Page No : 1

Groups Printed- Cars - Trucks (SU) - Trucks (TT)

	Salon Southern Driveway Eastbound						Salon Northern Driveway Westbound					Godwin Ave Northbound					Godwin Ave Southbound					
Start Time	Lett 1 n	Right	Let out	Rgin	Peds	App. Toal	Left	Thru	Right	Peds	App. Toal	Left	Thru	Right	Peds	App. Toal	Left	Thru	Right	Peds	App. Toal	Int Total
07:00 AM	0	1	0	0	0	1	0	0	0	0	0	0	65	0	0	65	1	61	0	0	62	128
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	77	0	0	77	0	80	0	0	80	157
07:30 AM	0	0	1	0	0	1	0	0	0	0	0	0	116	0	1	117	0	74	0	0	74	192
07:45 AM	0	0	2	0	0	2	0	0	1	0	1	0	113	0	0	113	2	93	0	0	95	211
Total	0	1	3	0	0	4	0	0	1	0	1	0	371	0	1	372	3	308	0	0	311	688
08:00 AM	0	2	0	0	0	2	1	0	0	0	1	0	82	0	1	83	0	91	0	0	91	177
08:15 AM	0	1	1	1	0	3	0	0	0	0	0	0	94	0	0	94	1	103	0	0	104	201
08:30 AM	1	0	0	0	0	1	0	0	2	0	2	0	100	1	0	101	0	100	0	0	100	204
08:45 AM	0	1	1	0	0	2	0	0	0	0	0	0	87	0	0	87	1	101	0	0	102	191
Total	1	4	2	1	0	8	1	0	2	0	3	0	363	1	1	365	2	395	0	0	397	773
Grand Total	1	5	5	1	0	12	1	0	3	0	4	0	734	1	2	737	5	703	0	0	708	1461
Apprch \%	8.3	41.7	41.7	8.3	0		25	0	75	0		0	99.6	0.1	0.3		0.7	99.3	0	0		
Total \%	0.1	0.3	0.3	0.1	0	0.8	0.1	0	0.2	0	0.3	0	50.2	0.1	0.1	50.4	0.3	48.1	0	0	48.5	
Cars	1	5	5	1	0	12	1	0	3	0	4	0	706	1	2	709	5	673	0	0	678	1403
\% Cars	100	100	100	100	0	100	100	0	100	0	100	0	96.2	100	100	96.2	100	95.7	0	0	95.8	96
Trucks (SU)	0	0	0	0	0	0		0	0	0	0	0	28	0	0	28	0	30	0	0	30	58
\% Trucks (SU)	0	0	0	0	0	0	0	0	0	0	0	0	3.8	0	0	3.8	0	4.3	0	0	4.2	4
Trucks (TT)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Trucks (TT)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

D ynamic Traffic, LLC
1904 M ain Street, Lake Como, NJ 07719
245 M ain Street - Suite 110, Chester, NJ 07930
732-681-0760
File Name : Godwin Ave \& Commercial Driveways - PM
Site Code : 00000000
Start Date : 3/16/2021
Page No : 1

E/W: Salon ID Driveways
N/S: Godwin Ave
Town/County: Midland Park/Bergen Job \#: 3486-99-001T

Groups Printed- Cars - Trucks (SU) - Trucks (TT)

	Salon Southern Driveway Eastbound						Salon Northern Driveway Westbound					Godwin Ave Northbound					Godwin Ave Southbound					
Start Time	Lett In	Right n	Let Out	Rign	Peds	App. Toal	Left	Thru	Right	Peds	App. Toal	Left	Thru	Right	Peds	App. Toal	Left	Thru	Right	Peds	App. Toal	Int. Total
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	50	0	3	53	0	44	0	0	44	97
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	96	0	0	96	0	138	0	0	138	234
Total	0	0	0	0	0	0	0	0	0	0	0	0	146	0	3	149	0	182	0	0	182	331
05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	122	0	2	124	1	116	0	0	117	241
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	110	0	0	110	0	137	0	0	137	247
05:30 PM	1	0	0	0	0	1	0	0	0	0	0	0	80	0	0	80	0	92	0	0	92	173
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	87	0	1	88	0	74	0	0	74	162
Total	1	0	0	0	0	1	0	0	0	0	0	0	399	0	3	402	1	419	0	0	420	823

| 06:00 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 65 | 0 | 0 | 65 | 0 | 109 | 0 | 0 | 109 | 174 |
| ---: |
| 06:15 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 101 | 0 | 0 | 101 | 0 | 95 | 0 | 0 | 95 | 196 |
| Grand Total | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 711 | 0 | 6 | 717 | 1 | 805 | 0 | 0 | 806 | 1524 |
| Apprch \% | 100 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | 0 | 99.2 | 0 | 0.8 | | 0.1 | 99.9 | 0 | 0 | | |
| Total \% | 0.1 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 46.7 | 0 | 0.4 | 47 | 0.1 | 52.8 | 0 | 0 | 52.9 | |
| Cars | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 703 | 0 | 6 | 709 | 1 | 796 | 0 | 0 | 797 | 1507 |
| \% Cars | 100 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 98.9 | 0 | 100 | 98.9 | 100 | 98.9 | 0 | 0 | 98.9 | 98.9 |
| Trucks (SU) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 4 | 8 |
| $\%$ Trucks (SU) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.6 | 0 | 0 | 0.6 | 0 | 0.5 | 0 | 0 | 0.5 | 0.5 |
| Trucks (TT) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 0 | 5 | 0 | 0 | 5 | 9 |
| \% Trucks (TT) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.6 | 0 | 0 | 0.6 | 0 | 0.6 | 0 | 0 | 0.6 | 0.6 |

D ynamic Traffic, LLC
1904 M ain Street, Lake Como, NJ 07719
245 M ain Street - Suite 110, Chester, NJ 07930
732-681-0760
File Name : Godwin Ave \& Commercial Driveways - SAT
Site Code : 00000000
Start Date : 10/24/2020
Page No : 1

E/W: Salon ID Driveways
N/S: Godwin Ave
Town/County: Midland Park/Bergen
Job \#: 3486-99-001T

Groups Printed- Cars - Trucks (SU) - Trucks (TT)

	Salon Southern Driveway Eastbound						Salon Northern Driveway Westbound					Godwin Ave Northbound					Godwin Ave Southbound					
Start Time	Left In	Right 10	Let Out	Rign	Peds	App. Toal	Left	Thru	Right	Peds	App. Toal	Left	Thru	Right	Peds	App. Toal	Left	Thru	Right	Peds	App. Toal	1nt. Total
11:00 AM	0	0	0	1	0	1	0	0	0	0	0	0	94	7	2	103	0	107	0	0	107	211
11:15 AM	0	1	2	1	0	4	0	0	0	0	0	0	113	0	3	116	1	102	0	0	103	223
11:30 AM	0	1	1	2	0	4	0	0	1	0	1	0	97	1	0	98	0	127	0	0	127	230
11:45 AM	1	1	0	2	0	4	1	0	0	0	1	0	101	0	2	103	0	132	0	0	132	240
Total	1	3	3	6	0	13	1	0	1	0	2	0	405	8	7	420	1	468	0	0	469	904
12:00 PM	2	0	0	0	0	2	0	0	1	0	1	0	118	0	0	118	1	119	0	0	120	241
12:15 PM	2	1	1	4	0	8	0	0	1	0	1	0	123	0	0	123	1	148	0	0	149	281
12:30 PM	1	1	2	2	0	6	0	0	0	0	0	0	107	0	0	107	0	111	0	0	111	224
12:45 PM	0	3	2	1	0	6	0	0	0	0	0	0	119	1	0	120	0	109	0	0	109	235
Total	5	5	5	7	0	22	0	0	2	0	2	0	467	1	0	468	2	487	0	0	489	981
01:00 PM	1	1	1	0	0	3	0	0	1	0	1	0	117	0	0	117	1	119	0	0	120	241
01:15 PM	2	1	2	0	0	5	0	0	0	0	0	0	131	0	2	133	0	144	0	0	144	282
01:30 PM	2	0	0	1	0	3	0	0	0	0	0	0	107	0	2	109	0	107	0	0	107	219
01:45 PM	1	0	0	0	0	1	0	0	0	0	0	0	132	0	0	132	0	107	0	0	107	240
Total	6	2	3	1	0	12	0	0	1	0	1	0	487	0	4	491	1	477	0	0	478	982
Grand Total	12	10	11	14	0	47	1	0	4	0	5	0	1359	9	11	1379	4	1432	0	0	1436	2867
Apprch \%	25.5	21.3	23.4	29.8	0		20	0	80	0		0	98.5	0.7	0.8		0.3	99.7	0	0		
Total \%	0.4	0.3	0.4	0.5	0	1.6	0	0	0.1	0	0.2	0	47.4	0.3	0.4	48.1	0.1	49.9	0	0	50.1	
Cars	12	10	11	14	0	47	1	0	4	0	5	0	1339	9	11	1359	4	1416	0	0	1420	2831
\% Cars	100	100	100	100	0	100	100	0	100	0	100	0	98.5	100	100	98.5	100	98.9	0	0	98.9	98.7
Trucks (SU)	0	0	0	0	0	0	0	0	0	0	0	0	20	0	0	20	0	14	0	0	14	34
\% Trucks (SU)	0	0	0	0	0	0	0	0	0	0	0	0	1.5	0	0	1.5	0	1	0	0	,	1.2
Trucks (TT)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	2
\% Trucks (TT)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0	0.1	0.1

ocations: Godwin Ave EB
Town/County: Midland Park/Bergen Job \#: 3486-99-001T

D ynamic Traffic, LLC

1904 M ain Street, Lake Como, NJ 07719
245 M ain Street - Suite \#110, Chester, NJ 07930

Latitude: $0^{\prime} 0.0000$ Undefined

Locations: Godwin Ave (CR 84) WB Cross Street: E of Erie Ave Town/County: Midland Park/Bergen Job \#: 3486-99-001T

D ynamic Traffic, LLC

1904 M ain Street, Lake Como, NJ 07719
245 M ain Street - Suite \#110, Chester, NJ 07930

Latitude: 0 ' 0.0000 Undefined

ocation: Godwin Ave EB
Cross Street: E of Erie Ave
Town/County: Midland Park/ Bergen
Job \#: 0469-11-022T

D ynamic Traffic, LLC

1904 M ain Street, Lake Como, NJ 07719
245 M ain Street - Suite \#110, Chester, NJ 07930
732-681-0760
Latitude: 0 ' 0.0000 Undefined

ocation: Godwin Ave EB
Cross Street: E of Erie Ave
Town/County: Midland Park/ Bergen Job \#: 0469-11-022T

D ynamic Traffic, LLC

1904 M ain Street, Lake Como, NJ 07719
245 M ain Street - Suite \#110, Chester, NJ 07930
732-681-0760

Latitude: 0 ' 0.0000 Undefined

Start Time	$\begin{gathered} \text { Mon } \\ \text { 17-Oct-16 } \end{gathered}$	$\begin{gathered} \text { Tue } \\ \text { 18-Oct-16 } \\ \hline \end{gathered}$	$\begin{gathered} \text { Wed } \\ \text { 19-Oct-16 } \end{gathered}$	$\begin{gathered} \text { Thu } \\ \text { 20-Oct-16 } \end{gathered}$	$\begin{gathered} \text { Fri } \\ \text { 21-Oct-16 } \\ \hline \end{gathered}$	Average Day	$\begin{gathered} \text { Sat } \\ \text { 22-Oct-16 } \end{gathered}$	$\begin{gathered} \text { Sun } \\ \text { 23-Oct-16 } \\ \hline \end{gathered}$	Week Average		
12:00 AM	13	20	*		* *	16	*	*	16 [
01:00	10	16	*		* *	13	*	*	13]		
02:00	5	6	*		* *	6	*	*	6 -		
03:00	2	4	*		* *	3	*	*	3		
04:00	13	17	*		* *	15	*	*	15]		
05:00	42	46	*		* *	44	*	*	44		
06:00	132	132	*		* *	132	*	*	132		
07:00	342	354	*		*	348	*	*	348		
08:00	390	436	*		* *	413	*	*	413		
09:00	310	328	*		* *	319	*	*	319		
10:00	352	373	*		* *	362	*	*	362		
11:00	348	302	*		* *	325	*	*	325		
12:00 PM	456	475	*		* *	466	*	*	466		
01:00	398	395	*		* *	396	*	*	396		
02:00	362	407	*		* *	384	*	*	384		
03:00	415	428	*		* *	422	*	*	422		
04:00	432	438	*		* *	435	*	*	435		
05:00	484	486	*		* *	485	*	*	485		
06:00	355	363	*		* *	359	*	*	359		
07:00	230	252	*		* *	241	*	*	241		
08:00	172	187	*		* *	180	*	*	180		
09:00	120	139	*		* *	130	*	*	130		
10:00	68	91	*		* *	80	*	*	80		
11:00	37	57	*		* *	47	*	*	47		
Total	5488	5752	0	0	0	5621	0	0	5621		
AM Peak	08:00	08:00	-		- -	08:00	-	-	08:00	-	-
Vol.	390	436	-		- -	413	-	-	413	-	-
PM Peak	17:00	17:00	-		- -	17:00	-	-	17:00	-	-
Vol.	484	486	-		- -	485	-	-	485	-	-
Total	5488	5752	5613	5894	46183	11518	4951	3480	10845		
ADT		ADT 5,337		AADT 5,337							

ocation: Godwin Ave WB
Cross Street: E of Erie Ave
Town/County: Midland Park/ Bergen
Job \#: 0469-11-022T

D ynamic Traffic, LLC

1904 M ain Street, Lake Como, NJ 07719
245 M ain Street - Suite \#110, Chester, NJ 07930
732-681-0760
Latitude: 0 ' 0.0000 Undefined

ocation: Godwin Ave WB
Cross Street: E of Erie Ave
Town/County: Midland Park/ Bergen Job \#: 0469-11-022T

D ynamic Traffic, LLC

1904 M ain Street, Lake Como, NJ 07719
245 M ain Street - Suite \#110, Chester, NJ 07930
732-681-0760

Site Code: 1201
Station ID:

Latitude: $0^{\prime} 0.0000$ Undefined

Appendix C
 Capacity Analysis

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	r		\uparrow			\uparrow
Traffic Vol, veh/h	1	3	552	1	3	550
Future Vol, veh/h	1	3	552	1	3	550
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	-3	-	4	-	-	-2
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, \%	0	0	5	0	0	3
Mvmt Flow	1	3	587	1	3	585

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	r		\uparrow			\uparrow
Traffic Vol, veh/h	1	0	526	0	1	623
Future Vol, veh/h	1	0	526	0	1	623
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	-3	-	4	-	-	-2
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, \%	0	0	1	0	0	1
Mvmt Flow	1	0	578	0	1	685

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	1265	578	0	0	578	0
Stage 1	578	-	-	-	-	-
Stage 2	687	-	-	-	-	-
Critical Hdwy	5.8	5.9		-	4.1	-
Critical Hdwy Stg 1	4.8	-	-	-	-	-
Critical Hdwy Stg 2	4.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	233	545	-	-	1006	-
Stage 1	622	-	-	-	-	-
Stage 2	564	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	233	545	-	-	1006	-
Mov Cap-2 Maneuver	233	-	-	-	-	-
Stage 1	622	-	-	-	-	-
Stage 2	563	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	20.5		0		0	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	
Capacity (veh/h)		-	-	233	1006	-
HCM Lane V/C Ratio		-	-	0.005	0.001	-
HCM Control Delay (s)		-	-	20.5	8.6	0
HCM Lane LOS		-	-	C	A	A
HCM 95th \%tile Q(veh)		-	-	0	0	-

Intersection													
Int Delay, s/veh	0												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\$			¢			\uparrow		
Traffic Vol, veh/h	0	0	0	1	0	0	0	526	0	1	623	0	
Future Vol, veh/h	0	0	0	1	0	0	0	526	0	1	623	0	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control S	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	.	-	None	-	-	None	-	-	None	-	-	None	
Storage Length		-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	-1	-	-	-3	-	-	4	-	-	-3	-	
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91	
Heavy Vehicles, \%	2	0	2	0	0	0	0	1	0	0	1	0	
Mvmt Flow	0	0	0	1	0	0	0	578	0	1	685	0	

Intersection													
Int Delay, s/veh	0.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			¢			1			\uparrow		
Traffic Vol, veh/h	0	0	0	2	0	8	0	527	3	4	637	0	
Future Vol, veh/h	0	0	0	2	0	8	0	527	3	4	637	0	
Conflicting Peds, \#/hr		0	0	0	0	0	0	0	0	0	0	0	
Sign Control Stor	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized		-	None	-	-	None	-	-	None	-	-	None	
Storage Length		-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#		0	-	-	0	-	-	0	-	-	0	-	
Grade, \%		-1	-	-	-3	-	-	4	-	-	-3	-	
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88	
Heavy Vehicles, \%		0	2	0	0	0	0	1	0	0	1	0	
Mvmt Flow	0	0	0	2	0	9	0	599	3	5	724	0	

Major/Minor	Minor1	Major1			Major2		
Conflicting Flow All	1230	613	0	0	613	0	
Stage 1	613	-	-	-	-	-	
Stage 2	617	-	-	-	-	-	
Critical Hdwy	5.8	5.9	-	-	4.1	-	
Critical Hdwy Stg 1	4.8	-	-	-	-	-	
Critical Hdwy Stg 2	4.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	-	-	2.2	-	
Pot Cap-1 Maneuver	243	522	-	-	976	-	
Stage 1	603	-	-	-	-	-	
Stage 2	601	-	-	-	-	-	
Platoon blocked, \%			-	-		-	
Mov Cap-1 Maneuver	242	522	-	-	976	-	
Mov Cap-2 Maneuver	242	-	-	-	-	-	
Stage 1	603	-	-	-	-	-	
Stage 2	598	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	14		0		0		
HCM LOS	B						
Minor Lane/Major Mvm		NBT	NBR	BLn1	SBL	SBT	
Capacity (veh/h)		-	-	405	976	-	
HCM Lane V/C Ratio		-	-	0.011	0.003	-	
HCM Control Delay (s)		-	-	14	8.7	0	
HCM Lane LOS		-	-	B	A	A	
HCM 95th \%tile Q(veh)		-	-	0	0	-	

Intersection													
Int Delay, s/veh	0.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		¢			¢			F			\uparrow		
Traffic Vol, veh/h	6	0	5	3	0	1	7	569	3	1	567	7	
Future Vol, veh/h	6	0	5	3	0	1	7	569	3	1	567	7	
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized		-	None	-	-	None	-	-	None	-	-	None	
Storage Length		-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#		0	-	-	0	-	-	0	-	-	0	-	
Grade, \%		-1	-	-	-3	-	-	4	-	-	-3	-	
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94	
Heavy Vehicles, \%		0	2	0	0	0	0	5	0	0	3	0	
Mumt Flow	6	0	5	3	0	1	7	605	3	1	603	7	

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		F			\uparrow
Traffic Vol, veh/h	1	0	544	0	1	647
Future Vol, veh/h	1	0	544	0	1	647
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	-3	-	4	-	-	-2
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, \%	0	0	1	0	0	1
Mvmt Flow	1	0	598	0	1	711

Intersection													
Int Delay, s/veh	0.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			¢			F			\uparrow		
Traffic Vol, veh/h	5	0	4	1	0	0	7	539	0	1	638	9	
Future Vol, veh/h	5	0	4	1	0	0	7	539	0	1	638	9	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control Stor	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized		-	None	-	-	None	-	-	None	-	-	None	
Storage Length		-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#		0	-	-	0	-	-	0	-	-	0	-	
Grade, \%		-1	-	-	-3	-	-	4	-	-	-3	-	
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91	
Heavy Vehicles, \%		0	2	0	0	0	0	1	0	0	1	0	
Mvmt Flow	5	0	4	1	0	0	8	592	0	1	701	10	

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	MF		个			\uparrow
Traffic Vol, veh/h	1	3	557	1	2	666
Future Vol, veh/h	1	3	557	1	2	666
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	-3	-	4	-	-	-2
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	0	0	1	0	0	1
Mvmt Flow	1	3	633	1	2	757

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	1395	634	0	0	634	0
Stage 1	634	-	-	-	-	-
Stage 2	761	-	-	-	-	-
Critical Hdwy	5.8	5.9		-	4.1	-
Critical Hdwy Stg 1	4.8	-	-	-	-	-
Critical Hdwy Stg 2	4.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	199	509	-	-	959	-
Stage 1	592	-	-	-	-	-
Stage 2	528	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	198	509	-	-	959	-
Mov Cap-2 Maneuver	198	-	-	-	-	-
Stage 1	592	-	-	-	-	-
Stage 2	526	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	15		0		0	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	
Capacity (veh/h)		-	-	365	959	-
HCM Lane V/C Ratio		-	-	0.012	0.002	-
HCM Control Delay (s)		-	-	15	8.8	0
HCM Lane LOS		-	-	C	A	A
HCM 95th \%tile Q(veh)		-	-	0	0	-

Intersection													
Int Delay, s/veh	1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		*			\$			\uparrow			\uparrow		
Traffic Vol, veh/h	24	0	23	1	0	0	0	553	0	1	630	0	
Future Vol, veh/h	24	0	23	1	0	0	0	553	0	1	630	0	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control S	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	-1	-	-	-3	-	-	4	-	-	-3	-	
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91	
Heavy Vehicles, \%	2	0	2	0	0	0	0	1	0	0	1	0	
Mvmt Flow	26	0	25	1	0	0	0	608	0	1	692	0	

Intersection													
Int Delay, s/veh	3.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		¢			¢			F			\uparrow		
Traffic Vol, veh/h	48	0	47	2	0	8	0	573	3	4	638	0	
Future Vol, veh/h	48	0	47	2	0	8	0	573	3	4	638	0	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control Stor	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	-1	-	-	-3	-	-	4	-	-	-3	-	
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88	
Heavy Vehicles, \%	2	0	2	0	0	0	0	1	0	0	1	0	
Mvmt Flow	55	0	53	2	0	9	0	651	3	5	725	0	

May 24, 2021

Preliminary Cut/Fill Report:

The preliminary cut/fill calculations, provided below, are approximate and are based on a comparison of the site's existing grade to the proposed grade, as shown on the Grading Plan, prepared by our office, dated November 12, 2020, last revised May 24, 2021.

Approximate Proposed Cut On-Site $=1,352.940 \mathrm{Cu}$. Yd.
Approximate Proposed Fill On-Site $=3.432 \mathrm{Cu}$. Yd.
Approximate Net Cut/Fill On-Site $=\mathbf{1 , 3 4 9 . 5 0 8} \mathbf{C u}$. Yd. (Fill)

DRAINAGE STATEMENT

For

ABDD Capital, LLC

Proposed Dunkin' Drive-Thru Restaurant

Block 20.10, Lot 5.01
195 Godwin Avenue (CR 84)
Borough of Midland Park, Bergen County, New Jersey

Prepared by:

1904 Main Street
Lake Como, NJ 07719 (732) 974-0198

Joskue M. Sewald, PE, PP
NJ Professional Engineer License \#52908

November 2020
DEC \# 3486-99-001

TABLE OF CONTENTS

Section Page
I. Drainage Summary 2
II. Existing Site Conditions 2
III. Proposed Site Conditions 3
IV. Runoff Rate Reduction Performance 3
V. Conclusion 4

APPENDIX

- NRCS Web Soil Survey
- Runoff Curve Number (CN) Calculations - Existing
- Runoff Curve Number (CN) Calculations - Proposed
- Hydrograph Summary Reports - Existing \& Proposed Conditions, 2, 10 \& 100 Year Storm Events
- Stormwater Collection System Calculations (Pipe Sizing)
- Drainage Area Maps

I. Drainage Summary

This Drainage Statement has been prepared to define and analyze the stormwater drainage conditions that would occur as a result of the redevelopment of Block 20.01, Lot 5.01 in the Borough of Midland Park, Bergen County, New Jersey.

The subject site consists of 0.50 acres ($21,968 \mathrm{SF}$) and is located at 195 Godwin Avenue (CR 84) and is presently developed with a 2,534 SF Friendly's Restaurant. The site is bordered to the north by the Borough of Midland Park Post Office, to the east by Godwin Avenue with commercial uses beyond, to the south by the Midland Park Christian Reformed Church and to the west by residential uses with Van Blarcom Avenue beyond.

The existing conditions of the tract have been verified by the Boundary and Topographic Survey, prepared by Dynamic Survey, dated 08/10/2020, last revised 11/10/2020.

The proposed site improvements consist of demolishing the existing building for the construction of a 2,119 SF Dunkin' Drive-Thru Restaurant. Associated improvements include parking and access, lighting, landscaping and associated site features. It is important to note that the development will result in a net reduction in impervious area of approximately $5.5 \%(1,206 \mathrm{SF})$.

Based on the fact that the proposed development will not result in more than one (1) acre of land disturbance, and will not result in an increase of impervious coverage on-site by $1 / 4$ acre or more, the project is not classified as a "major development" and is not subject to the NJDEP Stormwater Management Rules (NJAC 7:8). Further, the proposed development decreases the area of impervious surfaces on-site. Therefore, the proposed project is not subject to the New Jersey Standards for Soil Erosion and Sediment Control runoff rate reduction requirements. It should be noted that due to the decrease in impervious coverage on-site, the peak runoff rates will be reduced under proposed conditions.

II. Existing Site Conditions

The subject site has been evaluated with the following drainage sub-watershed areas as depicted on the Existing Drainage Area Map included within the Appendix of this report:

Existing Study Area Godwin: This area consists of the majority of the subject site including the existing building, parking and access, and open space areas along the Godwin Avenue frontage. Stormwater runoff from this area is tributary to the existing stormwater conveyance system within Godwin Avenue via the existing on-site stormwater management facilities and overland flow.

Existing Study Area West: This area consists of open space located adjacent to the westerly property line. Stormwater runoff from this area drains to the west via overland flow.

Based upon the Bergen County Soil Survey, the soil types native to the site include:

SOIL TYPE	SOIL TYPE NAME	HYDROLOGIC SOIL GROUP
DuuB	Dunellen-Urban land complex, 3 to 8 percent slopes	A
DuuC	Dunellen-Urban land complex, 8 to 15 percent slopes	A

III. Proposed Site Conditions

The proposed site conditions have been evaluated using the following drainage sub-watershed area as depicted on the Proposed Drainage Area Map included within the Appendix of this report:

Proposed Study Area Godwin: This area consists of the majority of the subject site including the proposed building, parking and access, and open space areas along the Godwin Avenue frontage. The majority of the stormwater runoff from this area will be collected by onsite stormwater conveyance system and routed to the existing stormwater conveyance system within Godwin Avenue and overland flow.

Existing Study Area West: This area consists of open space located at the western side of the site. Stormwater runoff from this area will drain to the west of via overland flow as it does in the existing condition.

IV. Runoff Rate Reduction Performance

As noted previously, based on the fact that the project does not meet the definition of a major development under NJAC 7:8, the project is not subject to the stormwater runoff quantity, and groundwater recharge standards set forth by the NJDEP Stormwater Management Rules (NJAC 7:8). Additionally, the project will result in a reduction of impervious coverage on-site.

The following is a comparison of the pre and post-development runoff rates for the subject site.

Pre-Development and Post Development Peak Runoff Results Summary - Study Area Godwin

	EXISTING RUNOFF RATE (CFS)	PROPOSED RUNOFF RATE (CFS)	REDUCTION IN RUNOFF RATE (CFS)
2-Year	1.036	0.959	0.077
10-Year	1.584	1.465	0.119
100-Year	2.732	2.589	0.174

Pre-Development and Post Development Peak Runoff Results Summary - Study Area West

	EXISTING RUNOFF RATE (CFS)	PROPOSED RUNOFF RATE (CFS)	REDUCTION IN RUNOFF RATE (CFS)
2-Year	0.000	0.000	0.000
10-Year	0.001	0.000	0.001
100-Year	0.020	0.010	0.010

Pre-Development and Post Development Peak Runoff Results Summary - Overall

	EXISTING RUNOFF RATE (CFS)	PROPOSED RUNOFF RATE (CFS)	REDUCTION IN RUNOFF RATE (CFS)
2-Year	1.036	0.959	0.077
10-Year	1.584	1.465	0.119
100-Year	2.749	2.567	0.182

V. Conclusion

The proposed development has been designed with provisions for the safe and efficient control of stormwater runoff in a manner that will not adversely impact the existing drainage patterns, adjacent roadways, or adjacent parcels.

Although the project is exempt from the water quality requirements set forth by NJAC 7:8, the proposed development will result in a net reduction of impervious coverage thereby providing a benefit to the water quality of the stormwater leaving the site. Additionally, the project will promote groundwater recharge by reducing the amount of onsite impervious coverage.

Furthermore, the proposed redevelopment reduces the overall impervious coverage and therefore, reduces the stormwater runoff volume and runoff flow rates for the 2,10 , and 100 -year storm events. With this stated, it is evident that the proposed development will not have a negative impact on the existing drainage pattern, water quality, or groundwater recharge on site or within the vicinity of the subject parcel.

APPENDIX

NRCS WEB SOIL SURVEY

MAP LEGEND			MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	■	$\begin{aligned} & C \\ & C / D \end{aligned}$	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soils	\square	D	Warning: Soil Map may not be valid at this scale.
	\square	Not rated or not available	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
$\square \mathrm{AD}$	Water Fe	res	line placement. The maps do not show the small areas of
B		Streams and Canals	contrasting soils that could have been shown at a more detailed scale.
B/D	Transportation		
	+H+	Rails	Please rely on the bar scale on each map sheet for map
C	-	Interstate Highways	
C/D	\sim	US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
D	\cdots	Major Roads	Coordinate System: Web Mercator (EPSG:3857)
Soil Rating Lines	Background		Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts
	Pr	Aerial Photography	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
- ${ }^{\text {B }}$ B ${ }^{\text {a }}$ (This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
-			Soil Survey Area: Bergen County, New Jersey Survey Area Data: Version 17, Jun 1, 2020
$\sim \mathrm{m}$			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
- Not rated or not available			Date(s) aerial images were photographed: Oct 7, 2013-Feb 26, 2017
Soil Rating Points			
- A			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background
- A/D			imagery displayed on these maps. As a result, some minor
- $\square^{\text {a }}$			shifting of map unit boundaries may be evident.
- B / D			

Hydrologic Soil Group

Map unlt symbol	Map unit name	Rating	Acres In AOI	Percent of AOI
DuuB	Dunellen-Urban land complex, 3 to 8 percent slopes	A	0.5	74.5%
DuuC	Dunellen-Urban land complex, 8 to 15 percent slopes	A	0.2	25.5%
Totals for Area of Interest		0.7	$\mathbf{1 0 0 . 0 \%}$	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

RUNOFF CURVE NUMBER (CN) CALCULATIONS EXISTING

RUNOFF CURVE NUMBER (CN) CALCULATIONS PROPOSED

\subseteq
Proposed Drainage Area
Project: Proposed Dunkin Donuts w/ drive thru
Job \#: 3486-99-001
Location: Midland Park

HYDROGRAPH SUMMARY REPORTS - EXISTING \& PROPOSED CONDITIONS, 2, 10 \& 100 YEAR STORM EVENTS

Watershed Model Schematic

Legend

Hyd. Origin
1 SCS Runoff
3 SCS Runoff SCS Runoff Combine
Combine
SCS Runoff SCS Runoff SCS Runoff Combine
Combine

Description
Ex. Study Area West (Perv)
Ex. Study Area Godwin (Imp)
Ex. Study Area Godwin (Perv)
Ex. SA Godwin Total
Ex. Total
Prop. Study Area West (Perv)
Prop. Study Area Godwin (Imp)
Prop. Study Area Godwin (Perv)
Prop SA Godwin Total
Prop. Total

Hyd.	Hydrograph	Inflow				Peak Ou	ow (cts)				Hydrograph
	(origin)		1-Yr	2-rr	3-rr	5-Yr	10-Yr	25-Yr	50.Yr	100-Yr	
1	scs Runoff	\cdots	\cdots	0.000	\cdots	\cdots	0.001	\cdots	\cdots	0.020	Ex. Study Area West (Perv)
3	SCS Runoff	\cdots	\cdots	1.036	\cdots	\cdots	1.584	\cdots	\cdots	2.656	Ex. Study Area Godwin (Imp)
4	Scs Runoff	\cdots	\cdots	0.000	\cdots	\cdots	0.003	\cdots	\cdots	0.089	Ex. Study Area Godwin (Per)
5	Combine	3,4	\cdots	1.036	\cdots	\cdots	1.584	\cdots	\cdots	2.732	Ex. SA Godwin Total
6	Combine	1,5	\cdots	1.036	\cdots	\cdots	1.584	\cdots	\cdots	2.749	Ex. Total
8	scs Runoft	\cdots	\cdots	0.000	\cdots	\cdots	0.000	\cdots	\cdots	0.010	Prop. Study Area West (Perr)
10	scs Runoff	\cdots	\cdots	0.959	\cdots	\cdots	1.465	\cdots	\cdots	2.457	Prop. Study Area Godwin (Imp)
11	SCS Runoft	\cdots	\cdots	0.000	\cdots	\cdots	0.004	\cdots	\cdots	0.119	Prop. Study Area Godwin (Perv)
12	Combine	10, 11	\cdots	0.959	\cdots	\cdots	1.465	\cdots	\cdots	2.558	Prop SA Godvin Total
13	Combine	8, 12	\cdots	0.959	\cdots	\cdots	1.465	\cdots	\cdots	2.567	Prop. Total
									Tuesday, Nov 17, 2020		
Proj. file: 2020-11-05 Ex. Prop. 2-10-100.gpw											

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 1

Ex. Study Area West (Perv)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.000 \mathrm{cfs}$
Storm frequency	$=2$ yrs	Time to peak	$=1440 \mathrm{~min}$
Time interval	$=3 \mathrm{~min}$	Hyd. volume	$=0$ cuft
Drainage area	$=0.020$ ac	Curve number	$=39$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ USER	Time of conc. (TC)	$=6.00 \mathrm{~min}$
Total precip.	$=3.34$ in	Distribution	$=C u s t o m$
Storm duration	$=$ NOAA Atlas 14 Type-D.cds	Shape factor	$=484$

Ex. Study Area West (Perv)

Hyd No. 1

Hyd. No. 3
Ex. Study Area Godwin (Imp)

Hydrograph type	$=$ SCS Runoff
Storm frequency	$=2$ yrs
Time interval	$=3 \mathrm{~min}$
Drainage area	$=0.400$ ac
Basin SSlope	$=0.0 \%$
Tc method	$=$ USER
Total precip.	$=3.34$ in
Storm duration	$=$ NOAA Atlas 14 Type-D.cds

Peak discharge	$=1.036 \mathrm{cfs}$
Time to peak	$=726 \mathrm{~min}$
Hyd. volume	$=4,229 \mathrm{cuft}$
Curve number	$=98$
Hydraulic length	$=0 \mathrm{ft}$
Time of conc. (Tc)	$=6.00 \mathrm{~min}$
Distribution	$=$ Custom
Shape factor	$=484$

Hyd No. 3

Hyd. No. 4
Ex. Study Area Godwin (Perv)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.000 \mathrm{cfs}$
Storm frequency	$=2$ yrs	Time to peak	$=1440$ min
Time interval	$=3 \mathrm{~min}$	Hyd. volume	$=1 \mathrm{cuft}$
Drainage area	$=0.090$ ac	Curve number	$=39$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ USER	Time of conc. (TC)	$=6.00 \mathrm{~min}$
Total precip.	$=3.34$ in	Distribution	$=C u s t o m$
Storm duration	$=$ NOAA Atlas 14 Type-D.cds	Shape factor	$=484$

Ex. Study Area Godwin (Perv)

Hyd No. 4

Hyd. No. 5
Ex. SA Godwin Total
Hydrograph type $=$ Combine
Storm frequency $=2 \mathrm{yrs}$
Time interval $=3 \mathrm{~min}$ Inflow hyds.

$$
=3,4
$$

Peak discharge $=1.036 \mathrm{cfs}$
Time to peak
$=726 \mathrm{~min}$
Hyd. volume $=4,230 \mathrm{cuft}$
Contrib. drain. area $=0.490 \mathrm{ac}$

Hydraflow Hydrographs by Intelisolve v9.1
Tuesday, Nov 17, 2020
Hyd. No. 6
Ex. Total
Hydrograph type = Combine
Peak discharge $=1.036 \mathrm{cfs}$
Storm frequency
Time interval
$=2 \mathrm{yrs}$
Inflow hyds.
$=3 \mathrm{~min}$
$=1,5$
Time to peak $=726 \mathrm{~min}$
Hyd. volume $=4,230$ cuft
Contrib. drain. area $=0.020 \mathrm{ac}$

Ex. Total

Hydrograph Report

Hyd. No. 8
Prop. Study Area West (Perv)

Hydrograph type	$=$ SCS Runoff
Storm frequency	$=2$ yrs
Time interval	$=3 \mathrm{~min}$
Drainage area	$=0.010 \mathrm{ac}$
Basin Slope	$=0.0 \%$
Tc method	$=U S E R$
Total precip.	$=3.34$ in
Storm duration	$=$ NOAA Atlas 14 Type-D.cds

Peak discharge $=0.000 \mathrm{cfs}$
Time to peak $=1440 \mathrm{~min}$
Hyd. volume $=0$ cuft
Curve number $=39$
Hydraulic length $=0 \mathrm{ft}$
Time of conc. $(\mathrm{Tc})=6.00 \mathrm{~min}$
Distribution = Custom
Shape factor $=484$

Hyd No. 8

Hyd. No. 10
Prop. Study Area Godwin (Imp)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.959 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=726 \mathrm{~min}$
Time interval	$=3 \mathrm{~min}$	Hyd. volume	$=3,912 \mathrm{cuft}$
Drainage area	$=0.370 \mathrm{ac}$	Curve number	$=98$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ USER	Time of conc. (Tc)	$=6.00 \mathrm{~min}$
Total precip.	$=3.34$ in	Distribution	$=$ Custom
Storm duration	$=$ NOAA Atlas 14 Type-D.cds	Shape factor	$=484$

Hyd No. 10

Hyd. No. 11
Prop. Study Area Godwin (Perv)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.000 \mathrm{cfs}$
Storm frequency	$=2$ yrs	Time to peak	$=1440 \mathrm{~min}$
Time interval	$=3 \mathrm{~min}$	Hyd. volume	$=1$ cuft
Drainage area	$=0.120$ ac	Curve number	$=39$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ USER	Time of conc. (TC)	$=6.00 \mathrm{~min}$
Total precip.	$=3.34$ in	Sistribution	$=C u s t o m$
Storm duration	$=$ NOAA Atlas 14 Type-D.cds		

Q (cfs)
Prop. Study Area Godwin (Perv)
Hyd. No. 11 - 2 Year

Hyd No. 11

Hyd. No. 12

Prop SA Godwin Total

Hydrograph type	$=$ Combine	Peak discharge	$=0.959 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=726 \mathrm{~min}$
Time interval	$=3 \mathrm{~min}$	Hyd. volume	$=3,913 \mathrm{cuft}$
Inflow hyds.	$=10,11$	Contrib. drain. area $=0.490 \mathrm{ac}$	

Hyd. No. 13

Prop. Total
Hydrograph type $=$ Combine
Storm frequency $=2 \mathrm{yrs}$
Time interval
$=3 \mathrm{~min}$
Inflow hyds.
$=8,12$
Peak discharge $=0.959 \mathrm{cfs}$
Time to peak $=726 \mathrm{~min}$
Hyd. volume $\quad=3,913 \mathrm{cuft}$
Contrib. drain. area $=0.010 \mathrm{ac}$

Prop. Total

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

Hydrograph Report

Hydraflow Hydrographs by Intelisolve v9.1
Hyd. No. 1
Ex. Study Area West (Perv)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.001 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=774 \mathrm{~min}$
Time interval	$=3 \mathrm{~min}$	Hyd. volume	$=15 \mathrm{cuft}$
Drainage area	$=0.020 \mathrm{ac}$	Curve number	$=39$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ USER	Time of conc. $(\mathrm{Tc})=6.00 \mathrm{~min}$	
Total precip.	$=5.07$ in	Distribution	$=$ Custom
Storm duration	$=$ NOAA Atlas 14 Type-D.cds	Shape factor	$=484$

Hyd No. 1

Hyd. No. 3
Ex. Study Area Godwin (Imp)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=1.584 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=726 \mathrm{~min}$
Time interval	$=3 \mathrm{~min}$	Hyd. volume	$=6,579 \mathrm{cuft}$
Drainage area	$=0.400 \mathrm{ac}$	Curve number	$=98$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ USER	Time of conc. (Tc)	$=6.00 \mathrm{~min}$
Total precip.	$=5.07$ in	Distribution	$=$ Custom
Storm duration	$=$ NOAA Atlas 14 Type-D.cds	Shape factor	$=484$

Hyd No. 3

Hydrograph Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 4

Ex. Study Area Godwin (Perv)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.003 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=774 \mathrm{~min}$
Time interval	$=3 \mathrm{~min}$	Hyd. volume	$=66 \mathrm{cuft}$
Drainage area	$=0.090$ ac	Curve number	$=39$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ USER	Time of conc. (Tc) $=6.00 \mathrm{~min}$	
Total precip.	$=5.07$ in	Distribution	$=$ Custom
Storm duration	$=$ NOAA Atlas 14 Type-D.cds	Shape factor	$=484$

Hyd No. 4

Hyd. No. 5
Ex. SA Godwin Total
Hydrograph type $=$ Combine
Storm frequency $=10 \mathrm{yrs}$
Time interval $=3 \mathrm{~min}$
Inflow hyds.
$=3,4$
Peak discharge $=1.584 \mathrm{cfs}$
Time to peak $\quad=726 \mathrm{~min}$
Hyd. volume $=6,645$ cuft
Contrib. drain. area $=0.490 \mathrm{ac}$

Hyd. No. 6
Ex. Total
Hydrograph type $=$ Combine
Peak discharge $=1.584 \mathrm{cfs}$
Storm frequency
$=10 \mathrm{yrs}$
Time interval $=3 \mathrm{~min}$
Inflow hyds.
$=1,5$
Time to peak $=726 \mathrm{~min}$
Hyd. volume $=6,659 \mathrm{cuft}$
Contrib. drain. area $=0.020$ ac

Hydrograph Report

Hydraflow Hydrographs by Intelisolve v9.1
Hyd. No. 8
Prop. Study Area West (Perv)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.000 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=774 \mathrm{~min}$
Time interval	$=3 \mathrm{~min}$	Hyd. volume	$=7 \mathrm{cuft}$
Drainage area	$=0.010 \mathrm{ac}$	Curve number	$=39$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ USER	Time of conc. (Tc)	$=6.00 \mathrm{~min}$
Total precip.	$=5.07$ in	Distribution	$=$ Custom
Storm duration	$=$ NOAA Atlas 14 Type-D.cds	Shape factor	$=484$

Hyd No. 8

Hyd. No. 10
Prop. Study Area Godwin (Imp)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=1.465 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=726 \mathrm{~min}$
Time inteval	$=3 \mathrm{~min}$	Hyd. volume	$=6,086 \mathrm{cuft}$
Drainage area	$=0.370$ ac	Curve number	$=98$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U S E R$	Time of conc. (Tc)	$=6.00 \mathrm{~min}$
Total precip.	$=5.07$ in	Distribution	$=$ Custom
Storm duration	$=$ NOAA Atlas 14 Type-D.cds	Shape factor	$=484$

Hyd No. 10

Hyd. No. 11
Prop. Study Area Godwin (Perv)

Hydrograph type	$=$ SCS Runoff
Storm frequency	$=10$ yrs
Time interval	$=3 \mathrm{~min}$
Drainage area	$=0.120$ ac
Basin Stope	$=0.0 \%$
Tc method	$=$ USER
Total precip.	$=5.07 \mathrm{in}$
Storm duration	$=$ NOAA Atlas 14 Type-D.cds

Peak discharge $=0.004$ cfs
Time to peak
$=774 \mathrm{~min}$
Hyd. volume
Curve number
$=88 \mathrm{cuft}$
Hydraulic length $=0 \mathrm{ft}$
Time of conc. $(\mathrm{Tc})=6.00 \mathrm{~min}$
Distribution = Custom
Shape factor $=484$

Hyd No. 11

Hyd. No. 12
Prop SA Godwin Total
Hydrograph type = Combine
Storm frequency $=10 \mathrm{yrs}$
Time interval $=3 \mathrm{~min}$ Inflow hyds. $=10,11$

Peak discharge $=1.465 \mathrm{cfs}$
Time to peak $\quad=726 \mathrm{~min}$
Hyd. volume $=6,173$ cuft
Contrib. drain. area $=0.490 \mathrm{ac}$

Hydrograph Report

Hydraflow Hydrographs by Intelisolve v9.1
Hyd. No. 13
Prop. Total
Hydrograph type = Combine
Storm frequency $=10 \mathrm{yrs}$
Time interval $=3 \mathrm{~min}$
Inflow hyds.
$=8,12$
Peak discharge $=1.465 \mathrm{cfs}$ Time to peak
$=726 \mathrm{~min}$
Hyd. volume $\quad=6,180 \mathrm{cuft}$
Contrib. drain. area $=0.010 \mathrm{ac}$

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

Hydrograph Report

Hyd. No. 1
Ex. Study Area West (Perv)
Hydrograph type = SCS Runoff
Storm frequency
Time interval
$=100 \mathrm{yrs}$
Drainage area
Basin Slope
Tc method
Total precip.
Storm duration
min
$=0.020 \mathrm{ac}$
= 0.0%
= USER
$=8.47$ in
$=$ NOAA Atlas 14 Type-D.cds

Peak discharge $=0.020 \mathrm{cfs}$
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor

Hyd No. 1

Hyd. No. 3

Ex. Study Area Godwin (Imp)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=2.656 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=726 \mathrm{~min}$
Time interval	$=3 \mathrm{~min}$	Hyd. volume	$=11,203 \mathrm{cuft}$
Drainage area	$=0.400 \mathrm{ac}$	Curve number	$=98$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U S E R$	Time of conc. (Tc)	$=6.00 \mathrm{~min}$
Total precip.	$=8.47$ in	Distribution	$=$ Custom
Storm duration	$=$ NOAA Atlas 14 Type-D.cds	Shape factor	$=484$

Hyd. No. 4
Ex. Study Area Godwin (Perv)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.089 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=729 \mathrm{~min}$
Time interval	$=3 \mathrm{~min}$	Hyd. volume	$=417 \mathrm{cuft}$
Drainage area	$=0.090 \mathrm{ac}$	Curve number	$=39$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ USER	Time of conc. (Tc) $=6.00 \mathrm{~min}$	
Total precip.	$=8.47$ in	Distribution	$=$ Custom
Storm duration	$=$ NOAA Atlas 14 Type-D.cds	Shape factor	$=484$

Hyd. No. 5
Ex. SA Godwin Total

Hydrograph type	$=$ Combine
Storm frequency	$=100 \mathrm{yrs}$
Time interval	$=3 \mathrm{~min}$
Inflow hyds.	$=3,4$

Peak discharge $=2.732 \mathrm{cfs}$
Time to peak
$=726 \mathrm{~min}$
Hyd. volume $=11,619 \mathrm{cuft}$
Contrib. drain. area $=0.490 \mathrm{ac}$

Hyd. No. 6

Ex. Total
Hydrograph type = Combine
Storm frequency $=100 \mathrm{yrs}$
Time interval $=3 \mathrm{~min}$
Inflow hyds.
$=1,5$

Peak discharge $=2.749$ cfs
Time to peak $\quad=726 \mathrm{~min}$
Hyd. volume $=11,712 \mathrm{cuft}$
Contrib. drain. area $=0.020 \mathrm{ac}$

Ex. Total

Hydrograph Report

Hyd. No. 8
Prop. Study Area West (Perv)
Hydrograph type = SCS Runoff
Storm frequency
Time interval
$=100 \mathrm{yrs}$
Drainage area
$=3 \mathrm{~min}$
$=0.010 \mathrm{ac}$
= 0.0%
= USER
$=8.47 \mathrm{in}$
$=$ NOAA Atlas 14 Type-D.cds

Peak discharge $=0.010 \mathrm{cfs}$
Time to peak
$=729 \mathrm{~min}$
Hyd. volume
Curve number
$=46 \mathrm{cuft}$
Hydraulic length $=0 \mathrm{ft}$
Time of conc. $(\mathrm{Tc})=6.00 \mathrm{~min}$
Distribution = Custom
Shape factor $=484$

Hyd No. 8

Hydrograph Report

Hyd. No. 10
Prop. Study Area Godwin (Imp)
Hydrograph type = SCS Runoff
Storm frequency
Time interval
$=100 \mathrm{yrs}$
Drainage area
$=3 \mathrm{~min}$
Basin Slope
$=0.370 \mathrm{ac}$
$=0.0 \%$
Tc method $=$ USER
Total precip. $=8.47$ in
Storm duration $=$ NOAA Atlas 14 Type-D.cds

Peak discharge $=2.457 \mathrm{cfs}$
Time to peak
$=726 \mathrm{~min}$
Hyd. volume
Curve number
$=10,363$ cuft
$=98$
Hydraulic length $=0 \mathrm{ft}$
Time of conc. $(\mathrm{Tc})=6.00 \mathrm{~min}$
Distribution $=$ Custom
Shape factor $=484$

Hyd No. 10

Hydrograph Report

Hyd. No. 11
Prop. Study Area Godwin (Perv)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.119 \mathrm{cfs}$
Storm frequency	$=100$ yrs	Time to peak	$=729 \mathrm{~min}$
Time interval	$=3 \mathrm{~min}$	Hyd. volume	$=555 \mathrm{cuft}$
Drainage area	$=0.120$ ac	Curve number	$=39$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ USER	Time of conc. (TC)	$=6.00 \mathrm{~min}$
Total precip.	$=8.47$ in	Distribution	$=C u s t o m$
Storm duration	$=$ NOAA Atlas 14 Type-D.cds	Shape factor	$=484$

Hyd No. 11

Hydrograph Report

Hydraflow Hydrographs by Intelisoive v9.1

Hyd. No. 12

Prop SA Godwin Total

Hydrograph type	$=$ Combine	Peak discharge	$=2.558 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=726 \mathrm{~min}$
Time interval	$=3 \mathrm{~min}$	Hyd. volume	$=10,918 \mathrm{cuft}$
Inflow hyds.	$=10,11$	Contrib. drain. area	$=0.490 \mathrm{ac}$

Hyd. No. 13
Prop. Total

Hydrograph type	$=$ Combine	Peak discharge	$=2.567 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=726 \mathrm{~min}$
Time interval	$=3 \mathrm{~min}$	Hyd. volume	$=10,964 \mathrm{cuft}$
Inflow hyds.	$=8,12$	Contrib. drain. area	$=0.010 \mathrm{ac}$

Return Period (Yrs)	Intensity-Duration-Frequency Equation Coefficients (FHA)			
	B	D	E	(N/A)
1	39.0824	9.5000	0.8528	--------
2	45.6943	10.7000	0.8185	-----
3	0.0000	0.0000	0.0000	-----
5	99.7061	14.8000	0.9304	--------
10	249.7597	21.8001	1.0961	-------
25	115.7547	14.9000	0.8980	--
50	7.3699	0.1000	0.2544	----
100	403.8513	25.1001	1.1108	---

File name: TRENTON.idf

$$
\text { Intensity = } B /(T c+D)^{\wedge} E
$$

Return Period (Yrs)	Intensity Values (in/hr)											
	5 min	10	15	20	25	30	35	40	45	50	55	60
1	4.00	3.10	2.55	2.18	1.91	1.70	1.54	1.40	1.29	1.20	1.12	1.05
2	4.80	3.83	3.21	2.77	2.45	2.20	2.00	1.84	1.70	1.59	1.49	1.40
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.20	5.03	4.24	3.67	3.24	2.90	2.63	2.40	2.22	2.06	1.92	1.80
10	6.80	5.63	4.80	4.17	3.69	3.30	2.98	2.72	2.50	2.31	2.14	2.00
25	7.89	6.45	5.47	4.76	4.23	3.80	3.46	3.17	2.93	2.73	2.55	2.40
50	4.87	4.09	3.69	3.44	3.25	3.10	2.98	2.88	2.80	2.72	2.66	2.60
100	9.20	7.76	6.69	5.87	5.22	4.70	4.27	3.91	3.60	3.33	3.10	2.90

Tc = time in minutes. Values may exceed 60.
Precip. file name: Bergen County.pcp

Storm Distribution	Rainfall Precipitation Table (in)							
	1-yr	2-yr	3-yr	5-yr	$\mathbf{1 0 - y r}$	$\mathbf{2 5 - y r}$	$\mathbf{5 0 - y r}$	$\mathbf{1 0 0}$-yr
SCS 24-hour	0.00	3.34	0.00	0.00	5.07	6.28	0.00	8.47
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	1.25	3.34	0.00	0.00	5.07	6.28	0.00	8.47

Watershed Model Schematic 1
Hydrograph Return Period Recap 2
2 - Year
Summary Report 3
Hydrograph Reports 4
Hydrograph No. 1, SCS Runoff, Ex. Study Area West (Perv) 4
Hydrograph No. 3, SCS Runoff, Ex. Study Area Godwin (Imp) 5
Hydrograph No. 4, SCS Runoff, Ex. Study Area Godwin (Perv) 6
Hydrograph No. 5, Combine, Ex. SA Godwin Total 7
Hydrograph No. 6, Combine, Ex. Total 8
Hydrograph No. 8, SCS Runoff, Prop. Study Area West (Perv) 9
Hydrograph No. 10, SCS Runoff, Prop. Study Area Godwin (Imp) 10
Hydrograph No. 11, SCS Runoff, Prop. Study Area Godwin (Perv) 11
Hydrograph No. 12, Combine, Prop SA Godwin Total 12
Hydrograph No. 13, Combine, Prop. Total 13
10 - Year
Summary Report 14
Hydrograph Reports 15
Hydrograph No. 1, SCS Runoff, Ex. Study Area West (Perv) 15
Hydrograph No. 3, SCS Runoff, Ex. Study Area Godwin (Imp) 16
Hydrograph No. 4, SCS Runoff, Ex. Study Area Godwin (Perv) 17
Hydrograph No. 5, Combine, Ex. SA Godwin Total 18
Hydrograph No. 6, Combine, Ex. Total 19
Hydrograph No. 8, SCS Runoff, Prop. Study Area West (Perv) 20
Hydrograph No. 10, SCS Runoff, Prop. Study Area Godwin (Imp) 21
Hydrograph No. 11, SCS Runoff, Prop. Study Area Godwin (Perv) 22
Hydrograph No. 12, Combine, Prop SA Godwin Total 23
Hydrograph No. 13, Combine, Prop. Total 24
100 - Year
Summary Report 25
Hydrograph Reports 26
Hydrograph No. 1, SCS Runoff, Ex. Study Area West (Perv) 26
Hydrograph No. 3, SCS Runoff, Ex. Study Area Godwin (Imp) 27
Hydrograph No. 4, SCS Runoff, Ex. Study Area Godwin (Perv) 28
Hydrograph No. 5, Combine, Ex. SA Godwin Total 29
Hydrograph No. 6, Combine, Ex. Total 30
Hydrograph No. 8, SCS Runoff, Prop. Study Area West (Perv) 31
Hydrograph No. 10, SCS Runoff, Prop. Study Area Godwin (Imp) 32
Hydrograph No. 11, SCS Runoff, Prop. Study Area Godwin (Perv) 33
Hydrograph No. 12, Combine, Prop SA Godwin Total 34
Hydrograph No. 13, Combine, Prop. Total 35
IDF Report 36

STORMWATER COLLECTION SYSTEM CALCULATIONS (PIPE SIZING)

DYNAMIC
ENGINEERING

Inlet Area Summary and Average Coefficient (C) Calculations

Project: ABDD Capital
Job \#: 3486-99-001
Computed By: MSA
Checked By: KCK
Date: 11/17/2020

Drainage Area	Impervious Area (sf)	Coefficient (C) Used	$\begin{aligned} & \begin{array}{l} \text { Open Space } \\ \text { (SF) } \end{array} \end{aligned}$	Coefficient (C) Used	Average Coefficient (C) Used	Total Area (SF)	Total Area (acres)
Inlet Area 8	3448	0.95	288	0.35	0.90	3736	0.09
Inlet Area 10	4227	0.95	947	0.35	0.84	5174	0.12
Inlet Area 11	554	0.95	659	0.35	0.62	1213	0.03
Inlet Area 15	1690	0.95	1145	0.35	0.71	2835	0.07
Inlet Area 12	2520	0.95	627	0.35	0.83	3147	0.07
Inlet Area 13	1455	0.95	806	0.35	0.74	2261	0.05
Inlet Area Roof	2119	0.95	0	0.35	0.95	2119	0.05

Stormwater Collectlon System Calculatlons
Project: ADBB Capital
Job \#: 3486-99-001
Location: Midand Park
Design Storm: 25 -year

Computed By: MSA Checked By: KCK

Date: 11/17/2020

NOTES:

1) Design method used is Rational Method, unless otherwise noted.
2) Refer to Weighted Runoff Coefficient table
for calculation of incremental areas and C values

PIPE SECTION		SUBCATCHMENT AREA	INCREMENTAL		CUMULATIVE	TIME OF CONCENTRATION			1	PEAK RUNOFF		PIPING INPUT			PIPING DATA		
FROM	TO	Area (Acres)	"C"	AxC Ac	AxC (acres)	Te to Inlet (min)	Tc in Pipe (min.)	Final Tc (min)	(In/Hr)	Q to Inlet (CFS)	Q cum. for Pipe (CFS)	Did (10)	Length (Fi)	$\begin{gathered} \text { Man, } \\ \text { " } \mathrm{n} \text { " } \end{gathered}$	Slope (t A)	Pipe Capacity (cfs)	Pipe Velocity (fps)
Inlet $\overline{8}$	Inlet 10	0.09	0.90	0.08	0.08	10.00	0.27	10.00	6.80	0.54	0.54	15	600	0.013	0.0050	4.57	3.73
Inlet 10	Inlet II	0.12	0.84	0.10	0.18	10.00	0.25	10.27	6.80	0.68	1.22	15	57.0	0.013	0.0050	4.57	3.73
Inlet 15	Inlet It	0.07	0.71	0.05	0.05	10.00	0.22	10.00	6.80	0.34	0.34	15	50.0	0.013	0.0050	4.57	3.73
Inlet 11	Indet 12	0.03	0.62	0.02	0.25	10.00	0.19	10.52	6.68	0.13	1.67	15	43.0	0.013	0.0050	4.57	3.73
Roof	Inlet 12	0.05	0.95	0.05	0.05	10.00	0.23	10.00	6.80	0.34	0.34	6	520	0.010	0.0100	0.73	3.72
Inket 12	Infer 13	0.07	$0 . \overline{83}$	0.06	0.36	10.00)	0.30	10.71	6.68	0.40	2.40	15	68.0	0.013	0.0050	4.57	3.73
Inlet 13	Ex iniet	0.05	0.74	0.004	0.40	jū何	0.08	11.0]	6.56	0.26	2.62	15	18.0	0.013	0.0050	4.57	3.73

DRAINAGE AREA MAPS

SANITARY SEWER \& POTABLE WATER ENGINEER'S REPORT

for
ABDD Capital Proposed Dunkin' Drive-Thru Restaurant
Block 20.10, Lot 5.01
195 Godwin Avenue (C.R. 84)
Borough of Midland Park, Bergen County, NJ

Prepared by:

DYNAMIC

 ENGINEERING1904 Main Street
Lake Como, NJ 07719
(732) 974-0198

Joshua M. Sowald, PE, PP
NJ Professichal Engineer License \#52908

INTRODUCTION

The subject property is known as Block 20.10, Lot 5.01 as shown on the Tax Maps of the Borough of Midland Park, Bergen County, New Jersey. The parcel consists of approximately 0.5 acres and is located within the B-1 (Business Retail) Zone. Under existing conditions, the parcel is developed with a Friendly's Restaurant.

The site is bound to the north by commercial uses, to the south by a religious use with commercial \& residential uses beyond, to the east by Godwin Avenue with commercial uses beyond, and to the west by residential uses.

The proposed development consists of the demolition of the existing Friendly's Restaurant and the construction of the proposed 2,119 SF Dunkin' Drive-Thru Restaurant. Additional improvements include driveways, parking areas, landscaping, lighting, stormwater management facilities and other related site improvements as shown on the accompanying engineering drawings.

PROPOSED SANITARY SEWER SYSTEM

The proposed sanitary sewer service will be provided to the Dunkin' Drive-Thru Restaurant building via approximately 54 LF of 4-inch, SDR-35 PVC lateral service connection at a 2.08% minimum slope to the existing sewer main within Godwin Avenue (CR 84).

SEWERAGE FLOW CALCULATION

Sanitary sewage flow estimation has been calculated utilizing the sanitary sewer design flow calculations listed under NJAC 7:14A-23.3(a). Considering the above, the proposed estimated daily sewerage demand is as follows:

Restaurant (24-Hour Service): 50 gallons per seat

Average Daily Flow in Gallons Per Day (GPD)
Proposed Dunkin' Drive-Thru Restaurant: 15 Seats $\times(50$ GPD / 1 Seat) $=750$ GPD

Proposed Total Sewage Flow = 750 GPD

SANITARY SEWER PIPE DESIGN

Per NJDEP regulations, the criteria for establishing the size of gravity sanitary sewer is to convey two times the average daily flow with the pipe flowing half full. Utilizing Manning's Equation with a roughness coefficient of 0.010 for PVC pipe, the following is the minimum capacity of the proposed sanitary sewer lateral:

Pipe Size	Slope	Roughness (n)	Capacity at $1 / 2$ Full	$2 \times$ ADF
4 " PVC	2.08%	0.010	$115,618 \mathrm{GPD}$	$1,500 \mathrm{GPD}$

The proposed 4-inch PVC sanitary sewer lateral can easily convey two times the proposed average daily flow proposed by the onsite development while flowing half full. The total flow from the proposed Dunkin' Drive-Thru Restaurant will constitute less than 1.00% of the line's total capacity.

PROPOSED WATER SYSTEM

The proposed water service for the Dunkin' Drive-Thru Restaurant will be provided via connection to the existing water line located near the Godwin Avenue (CR 84) right-of-way. The on-site service will be provided by a 2" Domestic Water Service to the proposed building.

DOMESTIC WATER DEMAND CALCULATION

As specified in NJAC 7:10-12.6(2)2, Table 1, the NJDEP Standard for Domestic Water Demand is as follows:

Restaurant - 10 gallons per day per seat

Demand projections shall be multiplied by a factor of 1,2 , or 3 reflecting the hours of operation as follows:

- One to six hours: Factor of 1
- Seven to twelve hours: Factor of 2
- Greater than twelve hours: Factor of 3

Average Daily Flow in Gallons Per Day (GPD)

Proposed Dunkin' Drive-Thru Restaurant:

- (15 Seats) $\times(10$ GPD/1 Seat $) \times(3)=450$ GPD

Total Domestic Water Demand $\mathbf{=} \mathbf{4 5 0}$ GPD

APPENDIX

CAPACITY OF CIRCULAR PIPE FLOWING $1 ⁄ 2$ FULL

Capacity of Circular Pipe Flowing $1 / 2$ Full
 Project: Proposed Commercial Development Job \#: 3486-99-001
 Computed By: MSP
 Checked By: KK
 Date: 11/19/2020

PIPE DESCRIPTION	SLOPE $(\%)$	SIZE (IN)	MANNING'S COEFFICIENT (n)	VELOCITY (FT/S)	CAPACITY (CFS)	CAPACITY (GPD)	CAPACITY (MGD)
4 4" PVC	2.080%	4	0.010		4.10	0.18	

Variables Defined
Q=Capacity of Pipe (CFS)
V=Velocity in Pipe Section (FT/S)
$R=$ Hydraulic Radius of Pipe Section
S=Slope of Pipe Section (FT/FT)
$\mathrm{D}=$ Diameter of Pipe (FT)
d=Depth of Flow in Pipe (FT)
$\mathrm{n}=$ Manning's Coefficient
Wp=Wetted Perimeter (FT)

Equations used:

$Q=V A$
$V=(1.49 / n)^{*} R^{\wedge}(2 / 3)^{*} S^{\wedge}(1 / 2)$
$Q=(1.49 / n)^{*} R^{\wedge}(2 / 3)^{*} S^{\wedge}(1 / 2)^{*} A$
Utilizing Appendix 16.A from the Civil Engineering Reference Manual-Seventh Edition, by Micheal Lindeburg, Copyright 1999
The following equations were utilized to calculate the Hydraulic Radius and Area of a Circular Pipe Section flowing $1 / 2$ full
$A=\left(\pi^{*} D^{\wedge} 2 / 4\right)^{*} 0.5=0.3927^{*} D^{\wedge} 2$
$R=A W p=0.3927^{*} D^{\wedge} 2 /\left(\left(2^{*} \pi^{*} D / 2\right)^{*} 0.5\right)=0.25^{*} D$
Therefore:
$Q=(1.49 / n)^{*}\left(0.25^{*} \mathrm{D}\right)^{\wedge}(2 / 3)^{*} \mathrm{~S}^{\wedge}(1 / 2)^{*}\left(0.3927^{*} \mathrm{D}^{\wedge} 2\right)$
$V=(1.49 / n)^{*}\left(0.25^{*} D\right)^{\wedge}(2 / 3)^{*} S^{\wedge}(1 / 2)$
Unit Conversion Equations
1 Cubic Foot=7.4805 Gallons
1 Day =86,400 Seconds
Therefore:

