TRAFFIC IMPACT STUDY

For

DUNKIN'

ABDD V. LLC Proposed Dunkin' Drive-Thru Restaurant

Property Located at:

195 Godwin Avenue (CR 84) Block 20.10 – Lot 5.01 Borough of Midland Park, Bergen County, NJ

 1904 Main Street
 245 Main Street, Suite #110

 Lake Como, NJ 07719
 Chester, NJ 07930

 (732) 681-0760

Craig W. Peregoy, PE NJ PE License #45880

Corey M. Chase, PE NJ PE License #47470

November 2, 2020 Revised: April 5, 2021

3486-99-001T

CGH

INTRODUCTION

It is proposed to construct a 2,173 SF Dunkin' restaurant with drive-through (The Project) on a parcel of land currently developed with a vacated Friendly's restaurant, located along the west side of Godwin Avenue (CR 84) between Princeton Avenue and Cross Avenue in the Borough of Midland Park, Bergen County, New Jersey, see Figure 1, in Appendix A. The site is designated as Block 20.10 – Lot 5.01 on the Borough Tax Maps. Access to the site is currently provided via one (1) full movement driveway along Godwin Avenue. It is proposed to close the existing access point and construct one (1) ingress only driveway and one (1) egress only driveway along Godwin Avenue. Parking will be provided via twelve (12) on-site parking spaces.

Dynamic Traffic, LLC has been retained to prepare this study to assess the traffic impact associated with the construction of The Project on the adjacent roadway network. This study documents the methodology, analyses, findings and conclusions of our study and includes:

- A detailed field inspection was conducted to obtain an inventory of existing roadway geometry, traffic control, and location and geometry of existing driveways and intersections.
- Existing traffic data was collected via manual turning movement (MTM) counts during the weekday AM, weekday PM and Saturday Midday peak periods at the intersections of Godwin Avenue with the north Salon ID driveway and Godwin Avenue with the south Salon ID driveway/Friendly's driveway.
- Projections of traffic to be generated by The Project were prepared utilizing trip generation data as published by the Institute of Transportation Engineers. Site traffic was then assigned to the adjacent street system based upon the anticipated directional distribution.
- Capacity analyses were conducted for the Existing, No Build, and Build conditions for the study intersections and the site driveways.
- The proposed site driveways were inspected for adequacy of geometric design, spacing and/or alignment to streets and driveways on the opposite side of the street, relationship to other driveways adjacent to the development, and conformance with accepted design standards.
- The parking layout and supply was assessed based on accepted design standards and demand experienced at similar developments.

EXISTING CONDITIONS

A review of the existing roadway conditions near the proposed site was conducted to provide the basis for assessing the traffic impact of the development. This included field investigations of the surrounding roadways and intersections, collection of traffic volume data, and extensive analyses.

Existing Roadway Conditions

The following are descriptions of the roadways in the study area:

<u>Godwin Avenue (CR 84)</u> is an Urban Principal Arterial roadway under the jurisdiction of Bergen County. In the vicinity of the site the posted speed limit is 30 MPH and the roadway provides one travel lane in each direction with a general north/south orientation. On-street parking is permitted along portions of both sides of the roadway while curb and sidewalk is provided along both sides of the roadway. Godwin Avenue provides a straight horizontal alignment and an uphill vertical alignment from south to north. The land uses along Godwin Avenue in the vicinity of The Project are primarily commercial.

Existing Traffic Volumes

Manual turning movement (MTM) counts were originally conducted on Wednesday, October 21, 2020 between 7:00 - 9:00 AM and on Saturday, October 24, 2020 between 11:00 AM - 2:00 PM at the intersections of Godwin Avenue with the north Salon ID driveway and Godwin Avenue with the south Salon ID driveway/Friendly's driveway. Supplemental MTM counts were conducted on Tuesday, March 16, 2021 between 4:30 - 6:30 PM at the same locations. In addition, automatic traffic recorder (ATR) counts were conducted along Godwin Avenue south of Erie Avenue from Wednesday, October 21, 2020 to Saturday, October 24, 2020 for purposes of normalizing the MTM count data.

It should be noted that traffic impacts associated with the COVID-19 pandemic were in effect as of the time of the traffic counts. As a result, current traffic volumes on the surrounding roadways are atypically low at this time and would not be representative of "existing" traffic conditions. Therefore, historical traffic volume data has been reviewed and compared with current traffic conditions.

ATR counts were previously conducted by this firm in October 2016 to the south of Erie Avenue. In order to better represent 2020 traffic volumes, the 2016 ATR volumes during the studied peak periods were grown utilizing an annual growth rate contained within the NJDOT Annual Background Growth Rate Table, which indicates a growth rate of 1.5% per year, for a period of four (4) years. The ATR traffic volumes representative of "existing" conditions were then compared to the October 2020 ATR volumes. Adjustment factors of 1.42, 1.29 and 1.22 were then calculated and applied to the weekday morning, weekday evening and Saturday midday counts, respectively, to develop traffic volumes that best represent "existing" conditions at the study intersections.

Review of the collected traffic data reveals that the weekday morning peak street hour (PSH) occurs between 7:45 - 8:45 AM, the weekday evening PSH occurs between 4:45 - 5:45 PM and the Saturday midday PSH occurs between 11:30 AM - 12:30 PM. Figure 2, located in Appendix A, shows the existing peak hour traffic volumes at the study intersections. All MTM and ATR counts are contained in Appendix B.

Existing Capacity Analysis

The methodology utilized in the capacity analyses is described in the Highway Capacity Manual 2010, published by the Transportation Research Board. In general, the term Level of Service (LOS) is used to provide a "qualitative" evaluation of capacity based upon certain "quantitative" calculations related to empirical values, such as traffic volume and intersection control.

An unsignalized (STOP sign controlled) driveway or side street along a through route is seldom critical from an overall capacity standpoint, however, it may be of great significance to the capacity of the minor cross-route, and it may influence the quality of traffic flow on both. When analyzing an unsignalized intersection, it is assumed that both the major street through and right turn movements are unimpeded and have the right-of-way over all side street traffic and left turns from the major street. All other turning movements in the intersection cross, merge with, or are otherwise impeded by major street movements. Traffic delays at unsignalized intersections are determined by sequentially processing these impeded movements. Table I describes the Level of Service ranges for unsignalized (stop controlled) intersections.

Level of Service Criteria for Unsignalized Intersections										
Level of Service	Average Control Delay (seconds per vehicle)									
А	0.0 to 10.0									
В	10.1 to 15.0									
С	15.1 to 25.0									
D	25.1 to 35.0									
E	35.1 to 50.0									
F	greater than 50.0									

Table I

It should be noted that the analyses within the Highway Capacity Manual assume a random arrival for all the movements, which may not be the case if an adjacent traffic signal is present that platoons vehicles.

All capacity analyses were performed utilizing the Synchro software package (Synchro 11). Table II summarizes the existing Levels of Service (LOS) and delays. All capacity analysis calculation worksheets are contained in Appendix C.

Ex	isting L	evels of	f Service		
Intersection	Direc Move		AM PSH	PM PSH	SAT PSH
Godwin Avenue and North Salon	WB	LR	B (14)	C (21)	B (15)
Driveway	SB	LT	A (9)	A (9)	A (9)
	EB	LTR	-	-	-
Godwin Avenue and South Salon	WB	LTR	C (20)	C (25)	C (15)
Driveway/Friendly's Driveway	NB	LTR	-	-	-
	SB	LTR	A (9)	A (9)	A (9)

Table III	
Existing Levels of Service	

A (#) - Unsignalized Intersection Level of Service (seconds of delay per vehicle)

The following are discussions pertaining to each of the existing intersections analyzed. All capacity analysis calculation worksheets are contained in Appendix C.

Godwin Avenue and North Salon Driveway

The north salon driveway intersects Godwin Avenue to form an unsignalized T-intersection with the salon driveway under stop control. The northbound and southbound approaches of Godwin Avenue provide a shared through/right turn lane and a shared left turn/through lane, respectively. The westbound approach of the salon driveway provides a single lane for left and right turns.

A review of the existing analysis reveals that the individual intersection movements operate at Level of Service "C" or better during the analyzed peak periods. See Table II for the individual movement Levels of Service and delays.

Godwin Avenue and South Salon Driveway/Friendly's Driveway

The south salon driveway/Friendly's driveway intersects Godwin Avenue to form an unsignalized four-leg intersection with the salon driveway/Friendly's driveway under stop control. The northbound and southbound approaches of Godwin Avenue each provide a shared left turn/through/right turn lane. The eastbound approach of the Friendly's driveway provides a shared left turn/through/right turn lane. The westbound approach of the salon driveway provides a shared left turn/through/right turn lane.

A review of the existing analysis reveals that the individual intersection movements operate at Level of Service "C" or better during the analyzed peak periods. See Table II for the individual movement Levels of Service and delays.

FUTURE CONDITIONS

Traffic volumes and operational analyses were developed for both the Future No Build and Build conditions. The No Build conditions provide a baseline for assessing the impact of site development traffic on the roadway system. The process of developing the No Build and Build traffic volumes and the subsequent analyses is outlined below.

Regardless of whether the subject site is developed or not, traffic volumes on the surrounding roadways are expected to increase as a result of developments throughout the region. A growth rate for roadways within the study area was obtained from the NJDOT Annual Background Growth Rate Table, which indicates a growth rate of 1.5% per year.

Future No Build traffic volumes were developed by applying the background growth rate of 1.5% for two (2) years to the study area existing traffic volumes. Figure 4, in Appendix A, shows the Future No Build traffic volumes.

Traffic Generation

Projections of future traffic volumes were developed utilizing data as published in the Institute of Transportation Engineers (ITE) publication *Trip Generation*, 10th Edition for Land Use Code (LUC) 937 – Coffee/Donut Shop with Drive-Through Window.

According to studies conducted by ITE and NJDOT, traffic associated with LUC 937 is not 100% newly generated. Rather, a portion of the traffic is diverted from the existing traffic stream on the adjacent roadway network. This is because the proposed Dunkin' is not a destination land use, instead patrons stop on their way to/from other locations such as home or work. While it is noted that NJDOT identifies 63% and 50% passby traffic percentages for LUC 937, conservatively the passby percentages for LUC 934 – Fast-Food Restaurant with Drive-Thru were utilized for analysis purposes. ITE identifies 49%, 50% and 37% passby traffic percentages for LUC 934 which were used during the weekday morning, weekday evening and Saturday midday peak hours, respectively. Table III below details the traffic volumes associated with the subject project taking into account the passby credits.

	Trip Gen	eration	Conside	ring Pas	sby Tra	ffic				
Trin Tra		_	AM PSH	I		PM PSE	I	9	SAT PSI	H
Trip Type	e	In	Out	Total	In	Out	Total	In	Out	Total
2 172 SE Duralia' with	Total	98	95	193	47	47	94	96	95	191
2,173 SF Dunkin' with Drive-Thru Window	Passby	48	47	95	24	23	47	36	35	71
Dire-Tinu window	New (Primary)	50	48	98	23	24	47	60	60	120

Table III Frip Generation Considering Passby Traffic

As previously noted, the site is currently developed with a vacated Friendly's restaurant. Although the restaurant is currently vacant, there is still trip generation potential associated with the existing development if the building became occupied. Therefore, the trip generation potential of the existing site was developed utilizing LUC 932 – High-Turnover (Sit-Down) Restaurant. Figure 3, located in Appendix A, shows the peak hour traffic volumes at the study intersections associated with the re-occupation of the existing Friendly's restaurant. Table IV below provides a comparison between the primary trips associated with the existing site and the primary trips projected for the proposed development based on ITE data.

Existing 2,530 SF Friendly's Restaurant 14 11 25 9 5 14 14 14 28 Proposed 2,173 SF Dunkin' with Drive-Thru Window 50 48 98 23 24 47 60 60 120											
Trin Tuno	I	AM PSH	I]	PM PSE	I	S	SAT PSH	H		
Пір Туре	In	Out	Total	In	Out	Total	In	Out	Total		
0	14	11	25	9	5	14	14	14	28		
1 /	50	48	98	23	24	47	60	60	120		
Difference	+36	+37	+73	+14	+19	+33	+46	+46	+92		

Table IV Existing vs. Proposed Primary Trin Generation Comparison

As shown in Table IV above, it is anticipated that 73 additional primary trips during the weekday morning peak hour, 33 additional primary trips during the weekday evening peak hour and 92 additional primary trips during the Saturday midday peak hour are anticipated to access the site from the adjacent roadway network with the proposed redevelopment.

Once the magnitude of traffic to be generated by the site is known, it is necessary to assign that traffic to the adjacent street system. The distribution of new traffic to the surrounding roadways is based on the location of primary arterial roadways, major signalized intersections and existing traffic patterns. Located in Appendix A, Figure 5 illustrates the distribution of primary site generated trips, Figure 6 illustrates the primary site generated volumes, Figure 7 illustrates the distribution of passby site generated trips, Figure 8 illustrates the passby site generated volumes and Figure 9 illustrates the total site generated volumes assigned to the study area network. The site generated volumes were added to the No Build traffic volumes to generate the Build traffic volumes, which are shown in Figure 10.

Future Capacity Analysis

Operational conditions at the study intersections were analyzed under the No Build and Build conditions and are summarized in Table V below.

	Futu		d Levels	of Service				_
	Direc	tion (AM	PSH	PM]	PSH	SAT	PSH
Intersection	Move		No Build	Build	No Build	Build	No Build	Build
	WB	LR	B (14)	-	C (21)	-	C (15)	-
Godwin Avenue and North Salon	VV D	LTR	-	C (15)	-	C (23)	-	C (17)
	NB	LTR	-	A (9)	-	A (9)	-	A (10)
Driveway/North Site Driveway	SB	LT	A (9)	-	A (9)	-	A (9)	-
	3D	LTR	-	A (9)	-	A (9)	-	A (9)
	EB	LTR	C (21)	D (28)	C (23)	D (26)	D (26)	E (45)
	WB	LTR	C (22)	-	D (27)	-	C (16)	-
Godwin Avenue and South Salon	WD	LR	-	C (23)	-	D (28)	-	C (17)
Driveway/South Site Driveway	NB	LTR	A (9)	-	A (9)	-	A (9)	-
	SB	LTR	A (9)	-	A (9)	-	A (9)	-
	3D	LT	-	A (9)	-	A (9)	-	A (9)

Table V

A (#) - Unsignalized Intersection Level of Service (seconds of delay per vehicle)

Godwin Avenue and North Salon Driveway/North Site Driveway

The north site driveway is proposed to intersect Godwin Avenue opposite the north salon driveway to form an unsignalized four-leg intersection with the salon driveway under stop control. The northbound and southbound approaches of Godwin Avenue will each provide a shared left turn/through/right turn lane. The westbound approach of the salon driveway will provide a shared left turn/through/right turn lane. The site driveway will provide a single westbound lane away from the intersection. It should also be noted that the existing crosswalk across Godwin Avenue will be relocated slightly south so as not to conflict with the proposed driveway location.

As designed, the individual intersection movements are anticipated to operate at Level of Service "C" or better during the analyzed peak hours. See Table V for the individual movement Levels of Service and delays.

Godwin Avenue and South Salon Driveway/South Site Driveway

The south site driveway is proposed to intersect Godwin Avenue opposite the south salon driveway to form an unsignalized four-leg intersection with the site driveway and the salon driveway under stop control. The northbound and southbound approaches of Godwin Avenue will provide a shared through/right turn lane and a shared left turn/through lane, respectively. The eastbound approach of the site driveway will provide a shared left turn/through/right turn lane. The westbound approach of the salon driveway will provide a single lane for left and right turns.

As designed, the individual intersection movements are anticipated to operate at Level of Service "E" or better during the analyzed peak hours. See Table V for the individual movement Levels of Service and delays.

SITE PLAN

Site Access and Circulation

The site plan was reviewed with respect to the site access and on-site circulation design. As noted previously, access to The Project will be provided via one (1) ingress only driveway and one (1) egress only driveway along Godwin Avenue.

The newly constructed parking lot will be serviced by a single one-way parking aisle with a width of 18 feet, which meets the minimum Ordinance requirement and is in compliance with accepted engineering design standards. The access aisle will allow for 45-degree angled parking as well as parallel parking. The drive-thru will operate in a counterclockwise direction with the ability to stack nine (9) cars in the drive-thru lane with an additional capacity of six (6) cars in the mobile order lane. The Borough of Midland Park Ordinance also states that any drive-through or drive-up windows shall have a minimum queuing line length of 150 feet from center of the first service area or window. The site as proposed provides a queuing line length of 200 feet which satisfies the Ordinance requirements. As such, this access configuration is sufficient to accommodate the traffic volumes anticipated for The Project.

Parking

The Borough of Midland Park Ordinance sets forth a parking requirement of 2 parking spaces per service station, 1 parking space per every 2 seats and 1 parking space per 250 SF for quick service restaurant uses. This equates to a parking requirement of 23 spaces for the proposed 2,173 SF Dunkin' coffee shop with drive-thru window and 8 seats. The site as proposed provides 12 parking spaces, therefore the Ordinance requirements are not met and a variance is required.

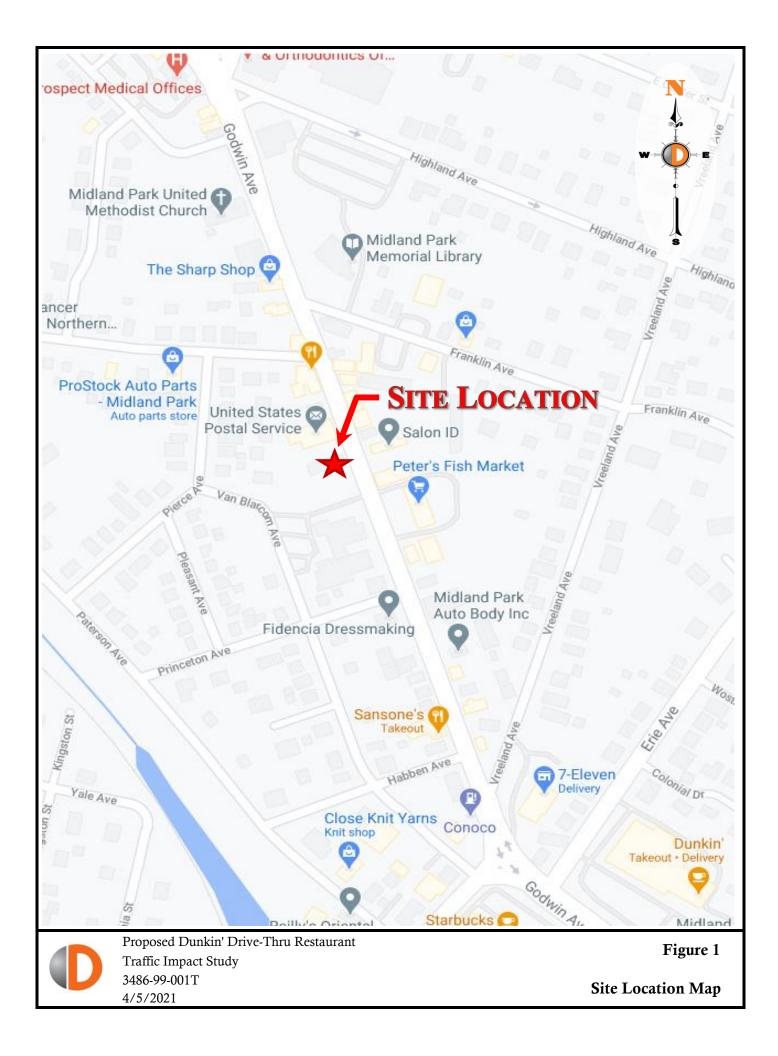
It should be noted that an Operational Characteristics Study has been conducted by Dynamic Traffic for standalone coffee/donut shops with drive-throughs in northern New Jersey. Based upon this study of three (3) similar developments, a coffee/donut shop with drive-through generates an average peak parking demand of 6.32 spaces per 1,000 SF. This equates to a parking demand of 13 spaces.

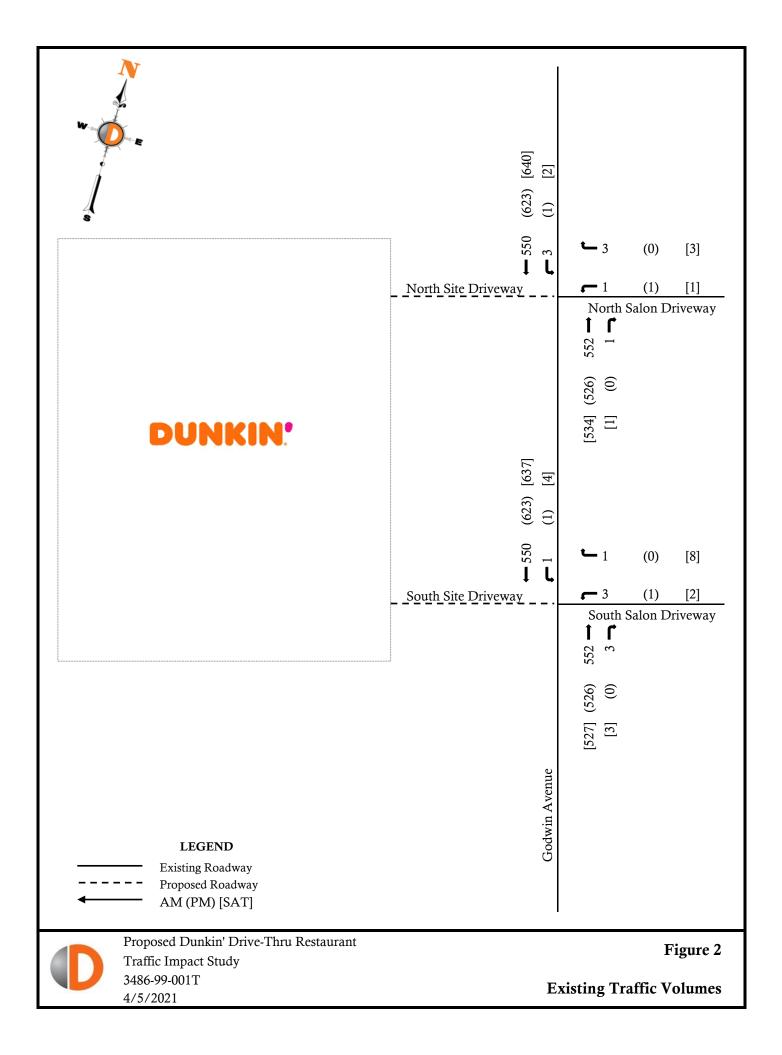
Furthermore, it is our experience that approximately 70% of traffic generated by Dunkin' utilize the drive-thru system and do not park, thus reducing the actual parking demand for the site. The proposed Dunkin' will also be high-turnover in nature, meaning the parking spaces will only be occupied for a short period of time. Therefore, it is expected that customers wishing to park and walk into the Dunkin' to purchase their items will not have difficulty finding an available parking space. As such, the proposed parking supply of 12 spaces will be sufficient to support the anticipated demand of the project given the above factors.

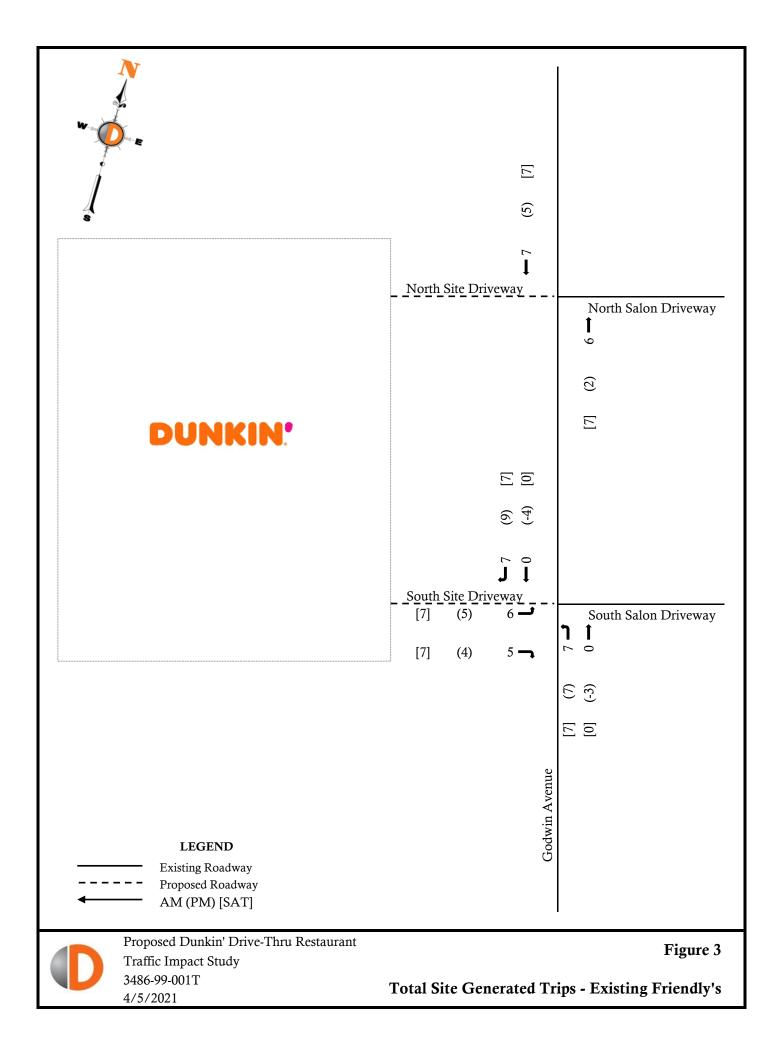
It is proposed to provide angled parking stalls with dimensions of 9'x18' and parallel parking stalls with dimensions of 9'x24, which meets the minimum Ordinance requirement and is in compliance with accepted engineering design standards.

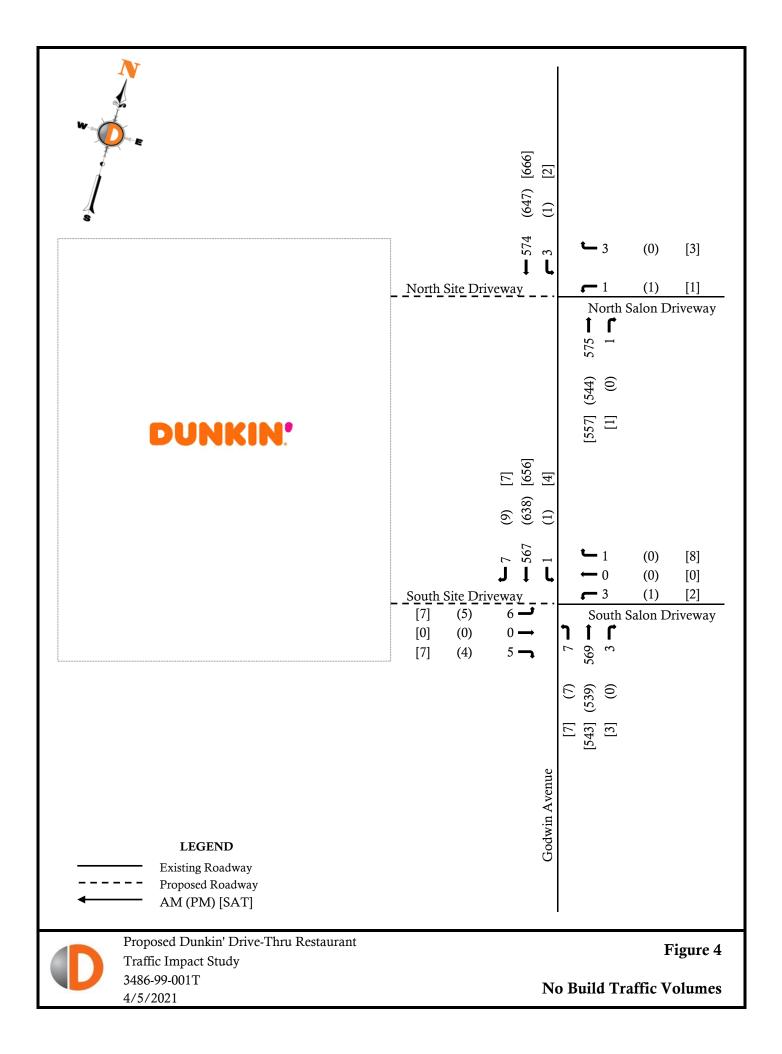
FINDINGS & CONCLUSIONS

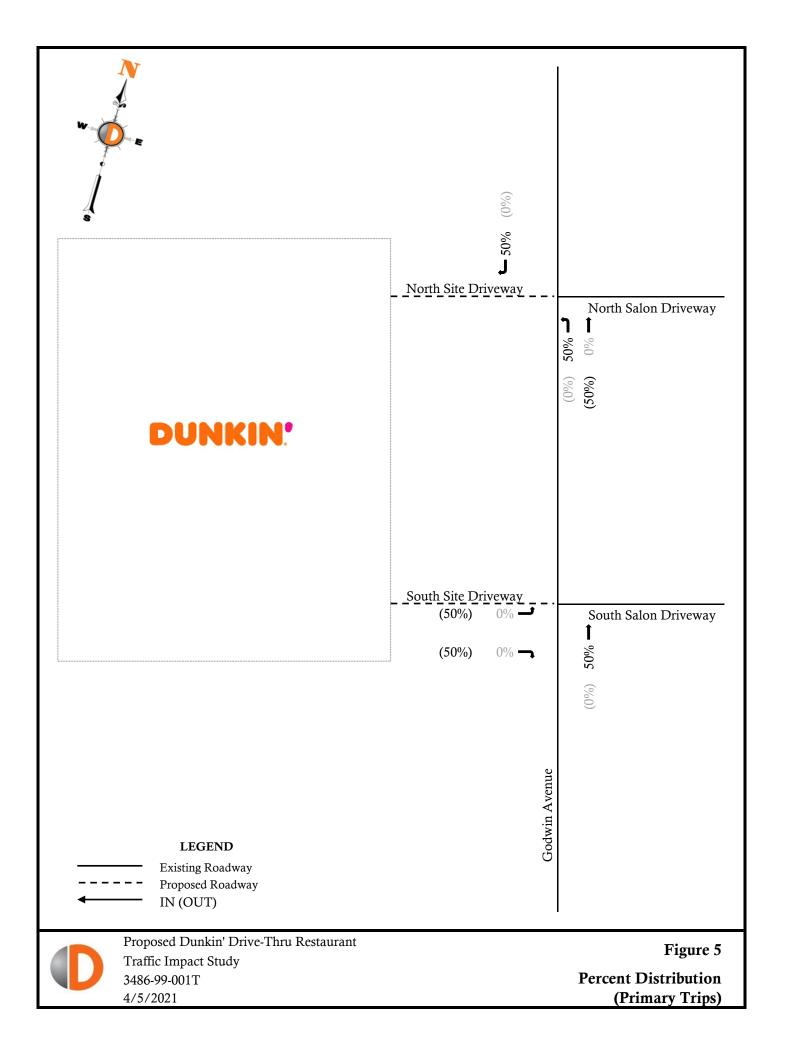
Findings

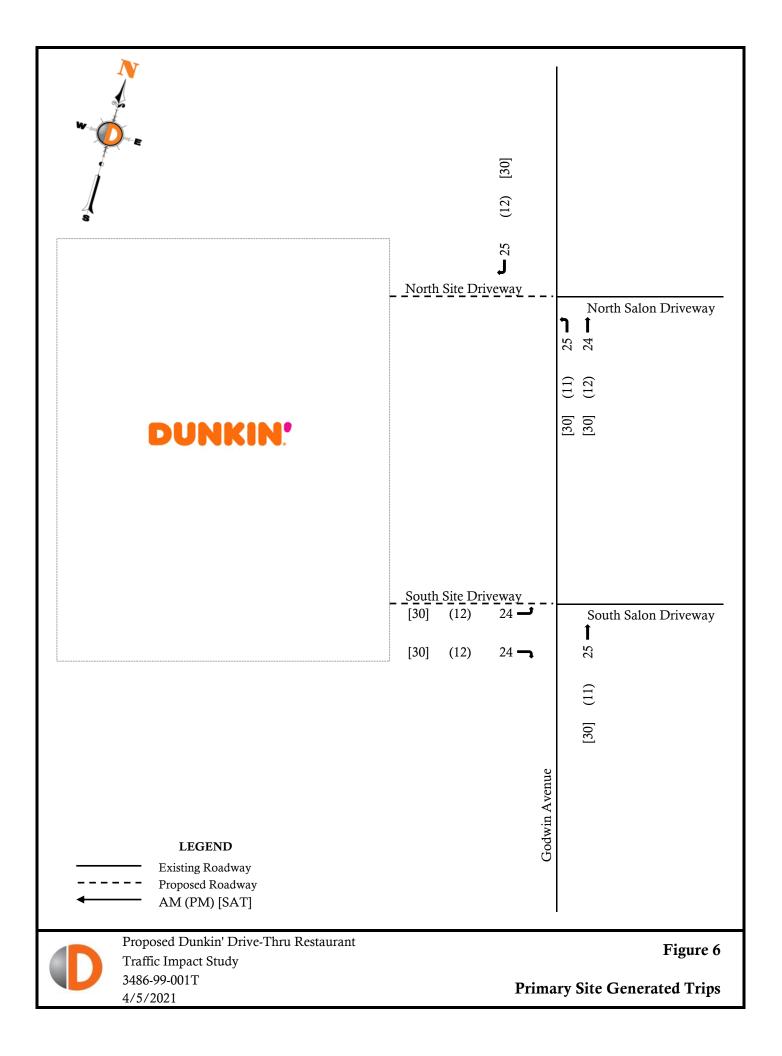

Based upon the detailed analyses as documented herein, the following findings are noted:

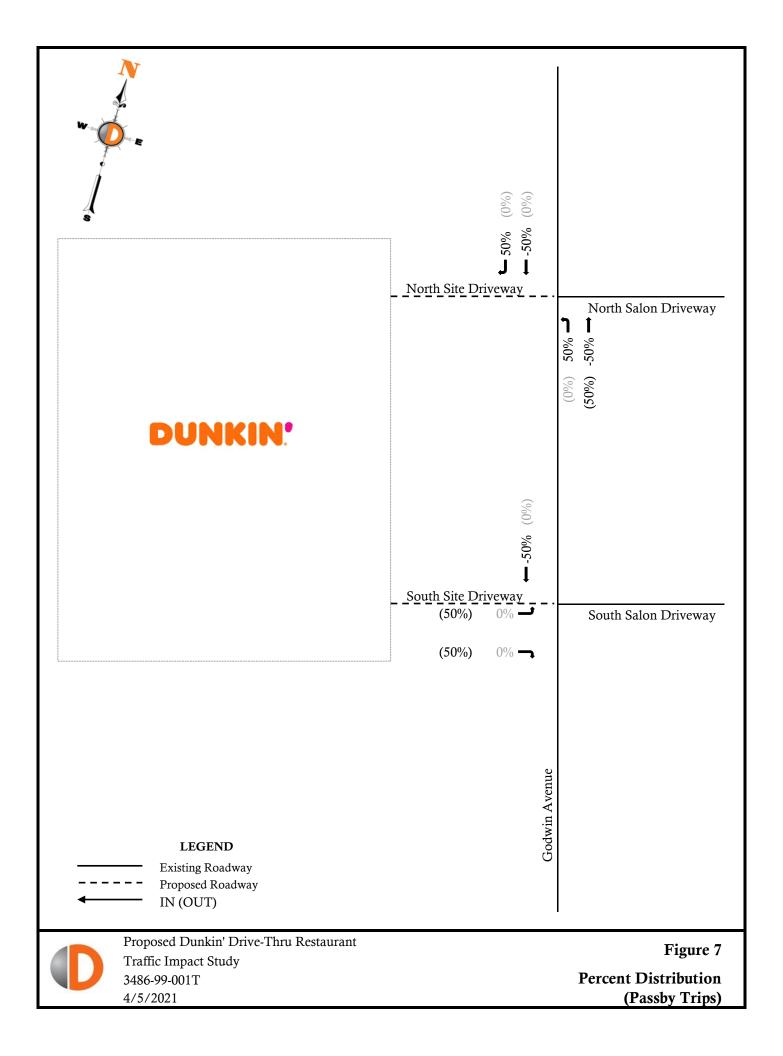

- The proposed 2,173 SF Dunkin' with drive-through window is projected to generate 36 entering trips and 37 exiting trips during the weekday morning peak hour, 14 entering trips and 19 exiting trips during the weekday evening peak hour and 46 entering trips and 46 exiting trips during the Saturday midday peak hour that are "new" to the adjacent roadway network when compared to the existing Friendly's restaurant.
- Access to the site will be provided via one (1) ingress only driveway and one (1) egress only driveway along Godwin Avenue.
- As designed, the individual intersection movements of Godwin Avenue and the north salon driveway/north site driveway are anticipated to operate at Level of Service "C" or better during the studied peak hours.
- As designed, the individual intersection movements of Godwin Avenue and the south salon driveway/south site driveway are anticipated to operate at Level of Service "E" or better during the studied peak hours.
- As proposed, The Project's site driveways and internal circulation have been designed to provide for safe and efficient movement of vehicles on-site.
- The proposed parking supply and design is sufficient to support the projected demand.

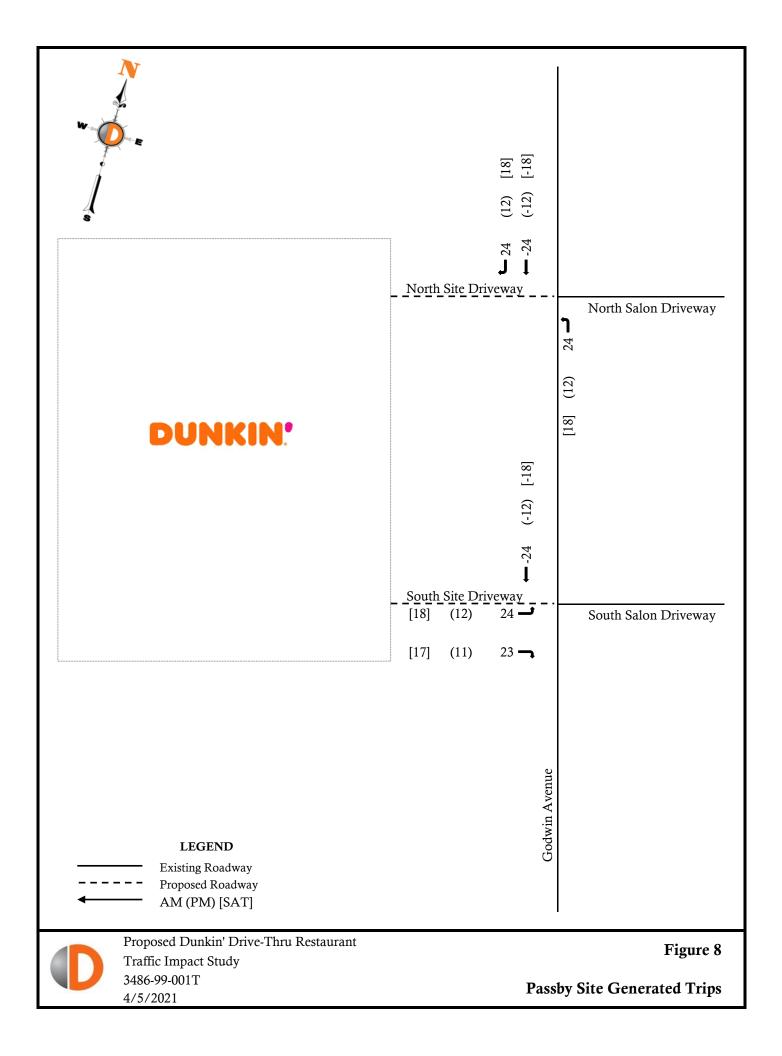

Conclusions

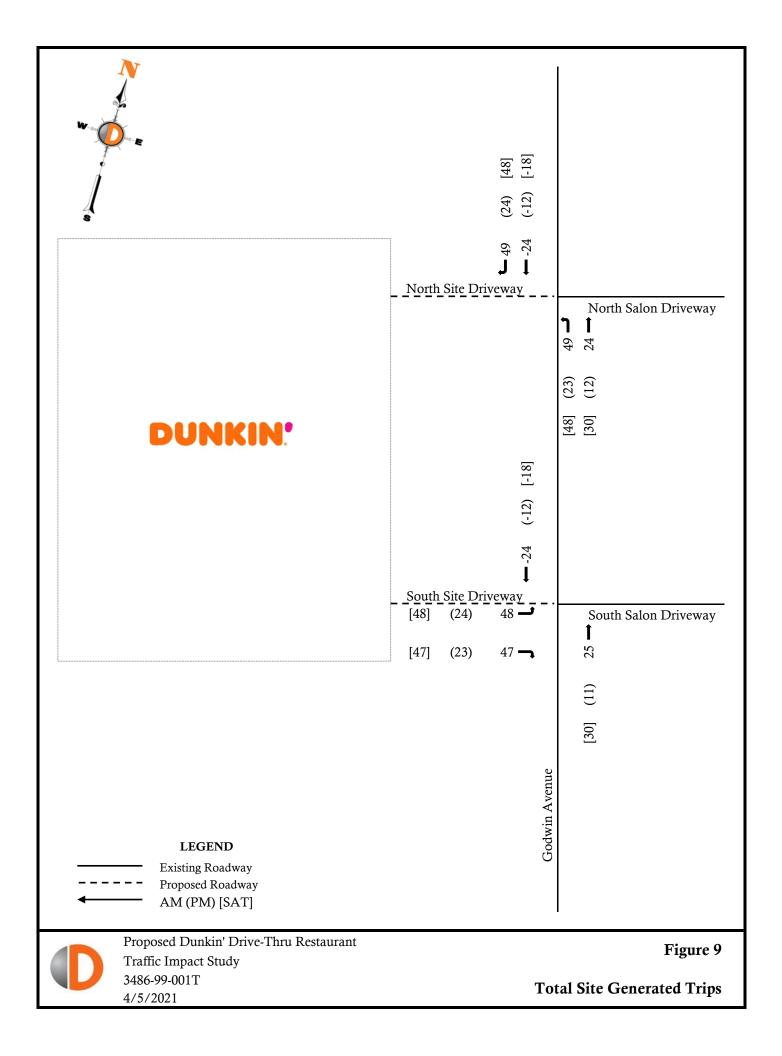

Based upon our Traffic Impact Study as detailed in the body of this report, it is the professional opinion of Dynamic Traffic, LLC that the adjacent street system of the Borough of Midland Park and Bergen County will not experience any significant degradation in operating conditions with the construction of The Project. The site driveways are located to provide safe and efficient access to the adjacent roadway system. The site plan as proposed provides for good circulation throughout the site and provides adequate parking to accommodate The Project's needs.

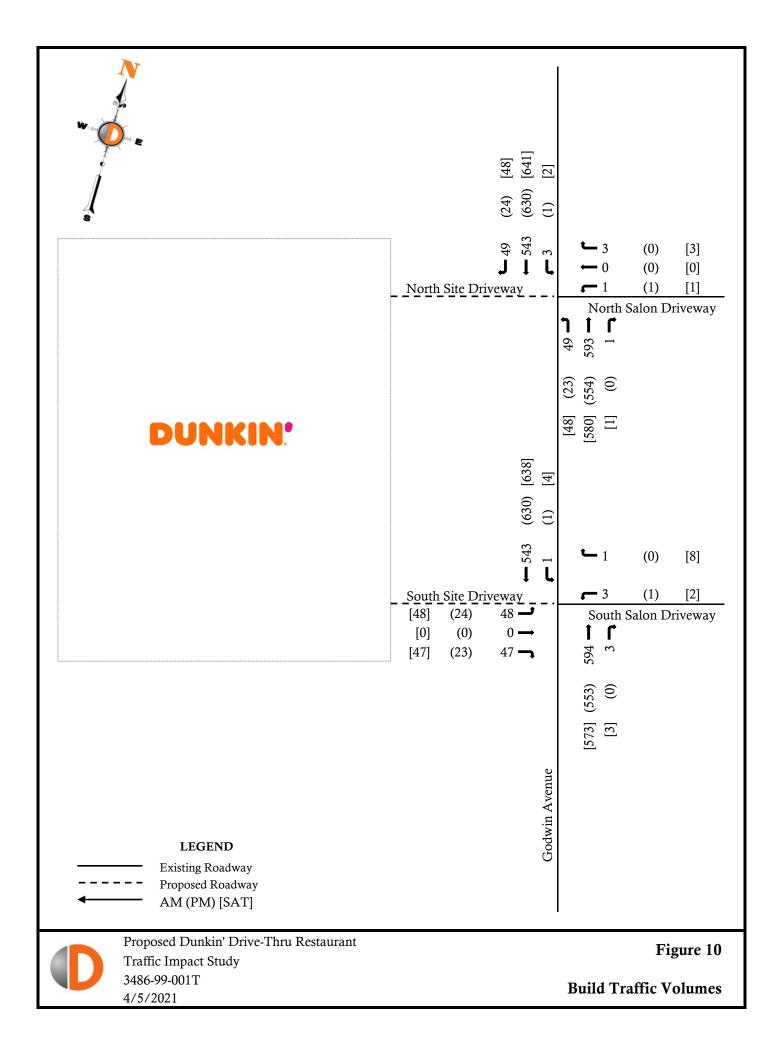

Appendix A Volume Figures











Appendix B Traffic Counts

Dynamic Traffic, LLC

1904 Main Street, Lake Como, NJ 07719 245 Main Street - Suite 110, Chester, NJ 07930 732-681-0760

E/W: Salon ID Driveways N/S: Godwin Ave Town/County: Midland Park/Bergen Job #: 3486-99-001T File Name : Godwin Ave & Commercial Driveways - AM Site Code : 00000000 Start Date : 10/21/2020 Page No : 1

Groups Printed- Cars - Trucks (SU) - Trucks (TT) Salon Southern Driveway Salon Northern Driveway Godwin Ave Godwin Ave																						
	S	alon	South	ern D	Privew	/ay	Salo	on No	rther	n Driv	eway		Go	dwin	Ave			Go	odwin	Ave		
			East	ooun	d			W	estbo	und			No	rthbo	und			So	uthbo	ound		
Start Time	Left In	Right In	Left Out	Right Out	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	0	1	0	0	0	1	0	0	0	0	0	0	65	0	0	65	1	61	0	0	62	128
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	77	0	0	77	0	80	0	0	80	157
07:30 AM	0	0	1	0	0	1	0	0	0	0	0	0	116	0	1	117	0	74	0	0	74	192
07:45 AM	0	0	2	0	0	2	0	0	1	0	1	0	113	0	0	113	2	93	0	0	95	211
Total	0	1	3	0	0	4	0	0	1	0	1	0	371	0	1	372	3	308	0	0	311	688
		_		_		-																
08:00 AM	0	2	0	0	0	2	1	0	0	0	1	0	82	0	1	83	0	91	0	0	91	177
08:15 AM	0	1	1	1	0	3	0	0	0	0	0	0	94	0	0	94	1	103	0	0	104	201
08:30 AM	1	0	0	0	0	1	0	0	2	0	2	0	100	1	0	101	0	100	0	0	100	204
08:45 AM	0	1	1	0	0	2	0	0	0	0	0	0	87	0	0	87	1	101	0	0	102	191
Total	1	4	2	1	0	8	1	0	2	0	3	0	363	1	1	365	2	395	0	0	397	773
Grand Total	1	5	5	1	0	12	1	0	3	0	4	0	734	1	2	737	5	703	0	0	708	1461
Apprch %	8.3	41.7	41.7	8.3	0		25	0	75	0		0	99.6	0.1	0.3		0.7	99.3	0	0		
Total %	0.1	0.3	0.3	0.1	0	0.8	0.1	0	0.2	0	0.3	0	50.2	0.1	0.1	50.4	0.3	48.1	0	0	48.5	
Cars	1	5	5	1	0	12	1	0	3	0	4	0	706	1	2	709	5	673	0	0	678	1403
% Cars	100	100	100	100	0	100	100	0	100	0	100	0	96.2	100	100	96.2	100	95.7	0	0	95.8	96
Trucks (SU)	0	0	0	0	0	0	0	0	0	0	0	0	28	0	0	28	0	30	0	0	30	58
% Trucks (SU)	0	0	0	0	0	0	0	0	0	0	0	0	3.8	0	0	3.8	0	4.3	0	0	4.2	4
Trucks (TT)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Trucks (TT)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Dynamic Traffic, LLC

1904 Main Street, Lake Como, NJ 07719 245 Main Street - Suite 110, Chester, NJ 07930 732-681-0760

E/W: Salon ID Driveways N/S: Godwin Ave Town/County: Midland Park/Bergen Job #: 3486-99-001T File Name : Godwin Ave & Commercial Driveways - PM Site Code : 00000000 Start Date : 3/16/2021 Page No : 1

							Grou	ps Pr	inted	- Cars	- Truc	ks (S	U) - T	rucks	(TT)							
	S	alon	South	ern D	rivew	/ay	Salo	on No	rther	n Driv	eway	-	Go	odwin	Ave			Go	odwin	Ave		
			East	ooun	d			W	estbo	und			No	orthbo	ound			So	uthbo	ound		
Start Time	Left In	Right In	Left Out	Right Out	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	50	0	3	53	0	44	0	0	44	97
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	96	0	0	96	0	138	0	0	138	234
Total	0	0	0	0	0	0	0	0	0	0	0	0	146	0	3	149	0	182	0	0	182	331
05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	122	0	2	124	1	116	0	0	117	241
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	110	0	0	110	0	137	0	0	137	247
05:30 PM	1	0	0	0	0	1	0	0	0	0	0	0	80	0	0	80	0	92	0	0	92	173
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	87	0	1	88	0	74	0	0	74	162
Total	1	0	0	0	0	1	0	0	0	0	0	0	399	0	3	402	1	419	0	0	420	823
06:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	65	0	0	65	0	109	0	0	109	174
06:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	101	0	0	101	0	95	0	0	95	196
Grand Total	1	0	0	0	0	1	0	0	0	0	0	0	711	0	6	717	1	805	0	0	806	1524
Apprch %	100	0	0	0	0		0	0	0	0		0	99.2	0	0.8		0.1	99.9	0	0		
Total %	0.1	0	0	0	0	0.1	0	0	0	0	0	0	46.7	0	0.4	47	0.1	52.8	0	0	52.9	
Cars	1	0	0	0	0	1	0	0	0	0	0	0	703	0	6	709	1	796	0	0	797	1507
% Cars	100	0	0	0	0	100	0	0	0	0	0	0	98.9	0	100	98.9	100	98.9	0	0	98.9	98.9
Trucks (SU)	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	0	4	0	0	4	8
% Trucks (SU)	0	0	0	0	0	0	0	0	0	0	0	0	0.6	0	0	0.6	0	0.5	0	0	0.5	0.5
Trucks (TT)	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	0	5	0	0	5	9
% Trucks (TT)	0	0	0	0	0	0	0	0	0	0	0	0	0.6	0	0	0.6	0	0.6	0	0	0.6	0.6

1904 Main Street, Lake Como, NJ 07719 245 Main Street - Suite 110, Chester, NJ 07930 732-681-0760

E/W: Salon ID Driveways N/S: Godwin Ave Town/County: Midland Park/Bergen Job #: 3486-99-001T File Name : Godwin Ave & Commercial Driveways - SAT Site Code : 00000000 Start Date : 10/24/2020 Page No : 1

							Grou	ps Pri	inted	- Cars	- Truc	ks (S	U) - T	rucks	(TT)							
	S	alon	South	iern D)rivew	/ay	Salo	on No	rther	n Driv	eway		Go	odwin	Ave			Go	odwin	Ave		
			East	bound	d			W	estbo	und			No	rthbc	und			So	uthbo	ound		
Start Time	Left In	Right In	Left Out	Right Out	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
11:00 AM	0	0	0	1	0	1	0	0	0	0	0	0	94	7	2	103	0	107	0	0	107	211
11:15 AM	0	1	2	1	0	4	0	0	0	0	0	0	113	0	3	116	1	102	0	0	103	223
11:30 AM	0	1	1	2	0	4	0	0	1	0	1	0	97	1	0	98	0	127	0	0	127	230
11:45 AM	1	1	0	2	0	4	1	0	0	0	1	0	101	0	2	103	0	132	0	0	132	240
Total	1	3	3	6	0	13	1	0	1	0	2	0	405	8	7	420	1	468	0	0	469	904
12:00 PM	2	0	0	0	0	2	0	0	1	0	1	0	118	0	0	118	1	119	0	0	120	241
12:15 PM	2	1	1	4	0	8	0	0	1	0	1	0	123	0	0	123	1	148	0	0	149	281
12:30 PM	1	1	2	2	0	6	0	0	0	0	0	0	107	0	0	107	0	111	0	0	111	224
12:45 PM	0	3	2	1	0	6	0	0	0	0	0	0	119	1	0	120	0	109	0	0	109	235
Total	5	5	5	7	0	22	0	0	2	0	2	0	467	1	0	468	2	487	0	0	489	981
01:00 PM	1	1	1	0	0	3	0	0	1	0	1	0	117	0	0	117	1	119	0	0	120	241
01:15 PM	2	1	2	0	0	5	0	0	0	0	0	0	131	0	2	133	0	144	0	0	144	282
01:30 PM	2	0	0	1	0	3	0	0	0	0	0	0	107	0	2	109	0	107	0	0	107	219
01:45 PM	1	0	0	0	0	1	0	0	0	0	0	0	132	0	0	132	0	107	0	0	107	240
Total	6	2	3	1	0	12	0	0	1	0	1	0	487	0	4	491	1	477	0	0	478	982
Grand Total	12	10	11	14	0	47	1	0	4	0	5	0	1359	9	11	1379	4	1432	0	0	1436	2867
Apprch %	25.5	21.3	23.4	29.8	0		20	0	80	0		0	98.5	0.7	0.8		0.3	99.7	0	0		
Total %	0.4	0.3	0.4	0.5	0	1.6	0	0	0.1	0	0.2	0	47.4	0.3	0.4	48.1	0.1	49.9	0	0	50.1	
Cars	12	10	11	14	0	47	1	0	4	0	5	0	1339	9	11	1359	4	1416	0	0	1420	2831
% Cars	100	100	100	100	0	100	100	0	100	0	100	0	98.5	100	100	98.5	100	98.9	0	0	98.9	98.7
Trucks (SU)	0	0	0	0	0	0	0	0	0	0	0	0	20	0	0	20	0	14	0	0	14	34
% Trucks (SU)	0	0	0	0	0	0	0	0	0	0	0	0	1.5	0	0	1.5	0	1	0	0	1	1.2
Trucks (TT)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	2
% Trucks (TT)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0	0.1	0.1

1904 Main Street, Lake Como, NJ 07719 245 Main Street - Suite #110, Chester, NJ 07930 732-681-0760

Site Code: 2102 Station ID:

Latitude: 0' 0.0000 Undefined

Start Time	Mon 19-Oct-20	Tue 20-Oct-20	Wed 21-Oct-20	Thu 22-Oct-20	Fri 23-Oct-20	Average Day		Sat 24-Oct-20	Sun 25-Oct-20	Week Average	
12:00 AM	19-001-20	20-001-20	21-001-20 *	22-001-20	<u>23-001-20</u> 29	Day26		<u>4-0ci-20</u> 40	25-001-20	Average)
01:00	*	*	*	9	11	10		40 14	*		1
01:00	*	*	*	9	4			14	*		3
02:00	*	*	*	0	4	(2	*		1
03:00	*	*	*	3	5	2		6	*		5 I
04.00	*	*	*	39	45	42		17	*		4
05:00	*	*	*	104	98	101		37	*	8	
07:00	*	*	*	235	230	232		106	*	19	
08:00	*	*	*	317	324	320		184	*	27	
09:00	*	*	*	252	274	263		221	*	24	
10:00	*	*	*	251	293	272		287	*	27	
11:00	*	*	*	357	345	351		336	*	346	
12:00 PM	*	*	428	405	439	424		432	*	420	
01:00	*	*	398	391	451	413		389	*	40	
01:00	*	*	407	359	372	379		507	*	37	
02:00	*	*		422	341	372		*	*	37	
03.00	*	*		369	341	385		*	*	38	
04.00	*	*		309	391	399		*	*	39	
05:00	*	*		279	344	306		*	*	30	
07:00	*	*		209	257	220		*	*	22	
08:00	*	*		153	160	149		*	*	14	
09:00	*	*		103	137	108		*	*	10	
10:00	*	*	66	61	116	81		*	*	8	
11:00	*	*		44	49	43		*	*		3
Total	0	0		4789	5097	4905		2086	0	478	
AM Peak	-	-	-	11:00	11:00	- 11:00		11:00	-	- 11:0	
Vol.	-	-	-	357	345	- 351		336	-	- 34	
PM Peak	-	-	12:00	15:00	13:00	- 12:00	-	12:00	-	- 12:0) -
Vol.	-	-	428	422	451	- 424	-	432	-	- 42	ó -
Total	0	0	3203	4789	5097	4905		2086	0	478	1
ADT		ADT 4,746		AADT 4,746							

1904 Main Street, Lake Como, NJ 07719 245 Main Street - Suite #110, Chester, NJ 07930 732-681-0760

Site Code: 2101 Station ID:

Latitude: 0' 0.0000 Undefined

Start	Mon	Tue	Wed	Thu	Fri	Average	Sa	at	Sun		Veek	
Time	19-Oct-20	20-Oct-20	21-Oct-20	22-Oct-20	23-Oct-20	Day	24-00		25-Oct-20	A	verage	
12:00 AM	*	*		32	30	31		43	*		35	
01:00	*	*		11	18	14		22	*		17	
02:00	*	*		7	3	5		17	*		9	
03:00	*	*	*	9	8	8		4	*		7]	
04:00	*	*		6	7	6		9	*		7	
05:00	*	*	*	36	39	38 122		11	*		29 _ 104 	
06:00 07:00	*	*	*	119 277	126 277			67	*		227	
	*	*	*			277		128	*		227	
08:00 09:00	*	*	*	320 335	349 300	334 318		225 288	*		308	
10:00	*	*	*	301	300	342		200 386	*		306	
	*	*	*						*			
11:00				396	399	398		428			408	
12:00 PM	*	*	403	455	526	481		491	*		484	
01:00	*	*	475	470	502	482		488	*		484	
02:00	*	*	473	429	503	468		*	*		468	
03:00	*	*	462	486	500	483		*	*		483	
04:00	*	*	460	472	482	471		*	*		471	
05:00	*	*	402	436	462	453		*	*		453	
06:00	*	*	347	387	409	381		*	*		381	
07:00	*	*	254	275	311	280		*	*		280	
08:00	*	*	201	189	221	204		*	*		204	
09:00	*	*	99	107	184	130		*	*		130	
10:00	*	*	73	77	119	90		*	*		90]
11:00	*	*	42	57	80	60		*	*		60 📃	
Total	0	0	3811	5689	6237	5876		2607	0		5793	
AM Peak	-	-	-	11:00	11:00	- 11:00	-	11:00	-	-	11:00	-
Vol.	-	-	-	396	399	- 398	-	428	-	-	408	-
PM Peak	-	-	13:00	15:00	12:00	- 15:00	-	12:00	-	-	12:00	-
Vol.	-	-	475	486	526	- 483	-	491	-	-	484	-
Total	0	0	3811	5689	6237	5876		2607	0		5793	
ADT		ADT 5,771		AADT 5,771								

1904 Main Street, Lake Como, NJ 07719 245 Main Street - Suite #110, Chester, NJ 07930 732-681-0760

Site Code: 1202 Station ID:

Latitude: 0' 0.0000 Undefined

Start Time	Mon 10-Oct-16	Tue 11-Oct-16	Wed 12-Oct-16	Thu 13-Oct-16	Fri 14-Oct-16	Average Day	15	Sat 5-Oct-16	Sun 16-Oct-16	Week Average	
12:00 AM	*	*	23	30	28	27		42	45	34 📃	
01:00	*	*	14	15	15	15		38	24	21	
02:00	*	*	5	6	4	5		13	9	7 🛛	
03:00	*	*	2	1	2	2		3	2	2	
04:00	*	*	16	19	16	17		6	10	13	
05:00	*	*	45	50	43	46		20	13	34 📃	
06:00	*	*	128	128	120	125		42	28	89	
07:00	*	*	352	341	370	354		114	56	247	
08:00	*	*	430	436	456	441		253	115	338	
09:00	*	*	341	328	396	355		306	202	315	
10:00	*	*	368	334	414	372		368	262	349	
11:00	*	*	302	382	406	363		419	294	361	
12:00 PM	*	*	475	478	492	482		460	334	448	
01:00	*	*	395	393	382	390		484	336	398	
02:00	*	*	432	406	428	422		366	255	377	
03:00	*	*	395	460	440	432		380	300	395	
04:00	*	*	442	448	430	440		368	272	392	
05:00	*	*	439	524	496	486		296	242	399	
06:00	*	*	338	354	405	366		290	222	322	
07:00	*	*	230	278	270	259		234	168	236	
08:00	*	*	190	187	197	191		142	123	168	
09:00	*	*	127	150	158	145		136	80	130	
10:00	*	*	76	92	128	99		109	54	92	
11:00	*	*	48	54	87	63		62	34	57	
Total	0	0	5613	5894	6183	5897		4951	3480	5224	
AM Peak	-	-	08:00	08:00	08:00	- 08:00	-	11:00	11:00	- 11:00	-
Vol.	-	-	430	436	456	- 441	-	419	294	- 361	-
PM Peak	-	-	12:00	17:00	17:00	- 17:00	-	13:00	13:00	- 12:00	-
Vol.	-	-	475	524	496	- 486	-	484	336	- 448	-

Location: Godwin Ave EB Cross Street: E of Erie Ave Town/County: Midland Park/ Bergen Job #: 0469-11-022T

Dynamic Traffic, LLC 1904 Main Street, Lake Como, NJ 07719

245 Main Street - Suite #110, Chester, NJ 07930 732-681-0760 Site Code: 1202 Station ID:

Latitude: 0' 0.0000 Undefined

Start Time	Mon 17-Oct-16	Tue 18-Oct-16	Wed 19-Oct-16	Thu 20-Oct-16	Fri 21-Oct-16		Average Day	22-	Sat Oct-16	Sun 23-Oct-16		Week Average	
12:00 AM	13	20	*	*	*		<u>Day</u> 16	22-0	*	*		16	
01:00	10	16	*	*	*		13		*	*		13	
01:00	5	6	*	*	*		6		*	*		6	
02:00	2	4	*	*	*		3		*	*		3	
04:00	13	17	*	*	*		15		*	*		15	
05:00	42	46	*	*	*		44		*	*		44	
06:00	132	132	*	*	*		132		*	*		132	
07:00	342	354	*	*	*		348		*	*		348	
08:00	390	436	*	*	*		413		*	*		413	
09:00	310	328	*	*	*		319		*	*		319	
10:00	352	373	*	*	*		362		*	*		362	
11:00	348	302	*	*	*		325		*	*		325	
12:00 PM	456	475	*	*	*		466		*	*		466	
01:00	398	395	*	*	*		396		*	*		396	
02:00	362	407	*	*	*		384		*	*		384	
03:00	415	428	*	*	*		422		*	*		422	
04:00	432	438	*	*	*		435		*	*		435	
05:00	484	486	*	*	*		485		*	*		485	
06:00	355	363	*	*	*		359		*	*		359	
07:00	230	252	*	*	*		241		*	*		241	
08:00	172	187	*	*	*		180		*	*		180 📃	
09:00	120	139	*	*	*		130		*	*		130	
10:00	68	91	*	*	*		80		*	*		80	
11:00	37	57	*	*	*		47		*	*		47 📃	
Total	5488	5752	0	0	0		5621		0	0		5621	
AM Peak	08:00	08:00	-	-	-	-	08:00	-	-	-	-	08:00	-
Vol.	390	436	-	-	-	-	413	-	-	-	-	413	-
PM Peak	17:00	17:00	-	-	-	-	17:00	-	-	-	-	17:00	-
Vol.	484	486	-	-	-	-	485	-	-	-	-	485	-
Total	5488	5752	5613	5894	6183		11518		4951	3480		10845	
ADT		ADT 5,337		AADT 5,337									

1904 Main Street, Lake Como, NJ 07719 245 Main Street - Suite #110, Chester, NJ 07930 732-681-0760

Site Code: 1201 Station ID:

Latitude: 0' 0.0000 Undefined

Start Time	Mon 10-Oct-16	Tue 11-Oct-16	Wed 12-Oct-16	Thu 13-Oct-16	Fri 14-Oct-16	Average Day	15	Sat 5-Oct-16	Sun 16-Oct-16	Week Average	
12:00 AM	*	*	25	34	26	<u>28</u>	15	60	44	<u>Average</u> 38	
01:00	*	*	17	12	24	18		38	24	23	
02:00	*	*	10	8	15	11		16	16	13	
03:00	*	*	5	6	3	5		4	8	5]	
04:00	*	*	15	15	15	15		6	3	11 🛛	
05:00	*	*	44	46	42	44		27	14	35 📕	
06:00	*	*	147	132	133	137		64	34	102	
07:00	*	*	351	354	374	360		204	103	277	
08:00	*	*	409	428	431	423		278	182	346	
09:00	*	*	367	370	357	365		378	300	354	
10:00	*	*	389	380	408	392		429	310	383	
11:00	*	*	354	425	512	430		518	363	434	
12:00 PM	*	*	526	508	578	537		533	404	510	
01:00	*	*	486	476	504	489		527	390	477	
02:00	*	*	488	489	556	511		468	374	475	
03:00	*	*	544	560	582	562		464	314	493	
04:00	*	*	547	555	560	554		411	322	479	
05:00	*	*	538	586	574	566		364	332	479	
06:00	*	*	434	450	464	449		336	259	389	
07:00	*	*	320	362	395	359		270	222	314	
08:00	*	*	243	274	282	266		216	170	237	
09:00	*	*	156	180	194	177		184	98	162	
10:00	*	*	99	110	164	124		124	50	109	
11:00	*	*	46	54	90	63		58	36	57 📃	
Total	0	0	6560	6814	7283	6885		5977	4372	6202	
AM Peak	-	-	08:00	08:00	11:00	- 11:00	-	11:00	11:00	- 11:00	
Vol.	-	-	409	428	512	- 430	-	518	363	- 434	
PM Peak	-	-	16:00	17:00	15:00	- 17:00	-	12:00	12:00	- 12:00	
Vol.	-	-	547	586	582	- 566	-	533	404	- 510	

Location: Godwin Ave WB Cross Street: E of Erie Ave Town/County: Midland Park/ Bergen Job #: 0469-11-022T

Dynamic Traffic, LLC 1904 Main Street, Lake Como, NJ 07719

245 Main Street - Suite #110, Chester, NJ 07930

732-681-0760

Site Code: 1201 Station ID:

Latitude: 0' 0.0000 Undefined

Start Time	Mon 17-Oct-16	Tue 18-Oct-16	Wed 19-Oct-16	Thu 20-Oct-16	Fri 21-Oct-16	Avera Day	ge	Sat 22-Oct-1	Sur 3 23-Oc	ו 1-16		Week Average	
12:00 AM	14	24	*	20-001-10	*	Day	19	22-061-10	*	*		19	
01:00	17	14	*	*	*		16		*	*		16	
01:00	8	8	*	*	*		8		*	*		8	
03:00	6	5	*	*	*		6		*	*		6	
04:00	11	20	*	*	*		16		*	*		16	
05:00	40	48	*	*	*		44		*	*		44	
06:00	162	162	*	*	*		162		*	*		162	
07:00	332	344	*	*	*		338		*	*		338	
08:00	388	389	*	*	*		388		*	*		388	
09:00	326	414	*	*	*		370		*	*		370	
10:00	397	369	*	*	*		383		*	*		383	
11:00	447	354	*	*	*		00		*	*		400	
12:00 PM	491	526	*	*	*		508		*	*		508	
01:00	473	486	*	*	*		480		*	*		480	
02:00	480	503	*	*	*		492		*	*		492	
03:00	523	552	*	*	*		538		*	*		538	
04:00	520	546	*	*	*		533		*	*		533	
05:00	543	560	*	*	*		52		*	*		552	
06:00	483	458	*	*	*		470		*	*		470	
07:00	336	353	*	*	*		344		*	*		344	
08:00	219	255	*	*	*		237		*	*		237	
09:00	149	170	*	*	*		160		*	*		160	
10:00	90	116	*	*	*		103		*	*		103	
11:00	50	60	*	*	*		55		*	*		55	
Total	6505	6736	0	0	0	6	622		0	0		6622	
AM Peak	11:00	09:00	-	-	-	- 11	1:00	-	-	-	-	11:00	-
Vol.	447	414	-	-	-	-	400	-	-	-	-	400	-
PM Peak	17:00	17:00	-	-	-	- 17	7:00	-	-	-	-	17:00	-
Vol.	543	560	-	-			552	-	-	-	-	552	-
Total	6505	6736	6560	6814	7283	13	507	597	7 4	1372		12824	
ADT		ADT 6,321		AADT 6,321									

Appendix C Capacity Analysis Intersection

Int	Dela	1 cl	voh	
IIII	Dela	7. S/	ven	

Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		4			÷
Traffic Vol, veh/h	1	3	552	1	3	550
Future Vol, veh/h	1	3	552	1	3	550
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	-3	-	4	-	-	-2
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	0	0	5	0	0	3
Mvmt Flow	1	3	587	1	3	585

Major/Minor	Minor1	М	lajor1	N	lajor2	
Conflicting Flow All	1179	588	0	0	588	0
Stage 1	588	-	-	-	-	-
Stage 2	591	-	-	-	-	-
Critical Hdwy	5.8	5.9	-	-	4.1	-
Critical Hdwy Stg 1	4.8	-	-	-	-	-
Critical Hdwy Stg 2	4.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	259	538	-	-	997	-
Stage 1	617	-	-	-	-	-
Stage 2	615	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	258	538	-	-	997	-
Mov Cap-2 Maneuver	258	-	-	-	-	-
Stage 1	617	-	-	-	-	-
Stage 2	613	-	-	-	-	-
Approach	WB		NB		SB	

Approach	WB	NB	SB	
HCM Control Delay, s	13.6	0	0	
HCM LOS	В			

Minor Lane/Major Mvmt	NBT	NBRW	/BLn1	SBL	SBT
Capacity (veh/h)	-	-	423	997	-
HCM Lane V/C Ratio	-	-	0.01	0.003	-
HCM Control Delay (s)	-	-	13.6	8.6	0
HCM Lane LOS	-	-	В	А	Α
HCM 95th %tile Q(veh)	-	-	0	0	-

Delay shiph 0.1												Intersection
Delay, Siveri 0. I											0.1	Int Delay, s/veh
vement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR	SBT	SBL	NBR	NBT	NBL	WBR	WBT	WBL	EBR	EBT	EBL	Movement
ne Configurations 🚓 🛟 🦨	ર્સ			4			4			- 44		Lane Configurations
iffic Vol, veh/h 0 0 0 3 0 1 0 552 3 1 550 0	550	1	3	552	0	1	0	3	0	0	0	Traffic Vol, veh/h
ture Vol, veh/h 0 0 0 3 0 1 0 552 3 1 550 0	550	1	3	552	0	1	0	3	0	0	0	Future Vol, veh/h
nflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0	0	0	0	0	0	0	Conflicting Peds, #/hr
n Control Stop Stop Stop Stop Stop Stop Free Free Free Free Free Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Sign Control
Channelized None None None None	· -	-	None	-	-	None	-	-	None	-	-	RT Channelized
rage Length	· -	-	-	-	-	-	-	-	-	-	-	Storage Length
h in Median Storage, # - 0 0 0 0 -	· 0	-	-	0	-	-	0	-	-	0	# -	/eh in Median Storage,
ade, %13 43 -	-3	-	-	4	-	-	-3	-	-	-1	-	Grade, %
ak Hour Factor 94 94 94 94 94 94 94 94 94 94 94 94 94	94	94	94	94	94	94	94	94	94	94	94	Peak Hour Factor
avy Vehicles, % 2 0 2 0 0 0 0 5 0 0 3 0	3	0	0	5	0	0	0	0	2	0	2	leavy Vehicles, %
mt Flow 0 0 0 3 0 1 0 587 3 1 585 0	585	1	3	587	0	1	0	3	0	0	0	Nvmt Flow

Major/Minor	Minor2		1	Minor1		М	ajor1		Μ	lajor2			
Conflicting Flow All	1176	1177	585	1176	1176	589	-	0	0	590	0	0	
Stage 1	587	587	-	589	589	-	-	-	-	-	-	-	
Stage 2	589	590	-	587	587	-	-	-	-	-	-	-	
Critical Hdwy	6.92	6.3	6.12	6.5	5.9	5.9	-	-	-	4.1	-	-	
Critical Hdwy Stg 1	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4	3.318	3.5	4	3.3	-	-	-	2.2	-	-	
Pot Cap-1 Maneuver	180	206	519	207	235	538	0	-	-	995	-	0	
Stage 1	512	516	-	549	550	-	0	-	-	-	-	0	
Stage 2	511	515	-	551	551	-	0	-	-	-	-	0	
Platoon blocked, %								-	-		-		
Mov Cap-1 Maneuver	179	206	519	207	235	538	-	-	-	995	-	-	
Mov Cap-2 Maneuver	179	206	-	207	235	-	-	-	-	-	-	-	
Stage 1	512	515	-	549	550	-	-	-	-	-	-	-	
Stage 2	510	515	-	550	550	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	0	20	0	0	
HCM LOS	А	С			

Minor Lane/Major Mvmt	NBT	NBR EE	3Ln1V	VBLn1	SBL	SBT
Capacity (veh/h)	-	-	-	245	995	-
HCM Lane V/C Ratio	-	-	-	0.017	0.001	-
HCM Control Delay (s)	-	-	0	20	8.6	0
HCM Lane LOS	-	-	Α	С	А	А
HCM 95th %tile Q(veh)	-	-	-	0.1	0	-

Intersection	
Int Delay, s/veh	0

Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		4			र्च
Traffic Vol, veh/h	1	0	526	0	1	623
Future Vol, veh/h	1	0	526	0	1	623
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	,# 0	-	0	-	-	0
Grade, %	-3	-	4	-	-	-2
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	0	0	1	0	0	1
Mvmt Flow	1	0	578	0	1	685

Major/Minor	Minor1	Μ	lajor1	Ν	/lajor2	
Conflicting Flow All	1265	578	0	0	578	0
Stage 1	578	-	-	-	-	-
Stage 2	687	-	-	-	-	-
Critical Hdwy	5.8	5.9	-	-	4.1	-
Critical Hdwy Stg 1	4.8	-	-	-	-	-
Critical Hdwy Stg 2	4.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	233	545	-	-	1006	-
Stage 1	622	-	-	-	-	-
Stage 2	564	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	233	545	-	-	1006	-
Mov Cap-2 Maneuver	233	-	-	-	-	-
Stage 1	622	-	-	-	-	-
Stage 2	563	-	-	-	-	-
•			ND		0.0	

Approach	WB	NB	SB	
HCM Control Delay, s	20.5	0	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)	-	-	233	1006	-
HCM Lane V/C Ratio	-	-	0.005	0.001	-
HCM Control Delay (s)	-	-	20.5	8.6	0
HCM Lane LOS	-	-	С	А	А
HCM 95th %tile Q(veh)	-	-	0	0	-

Intersection

Int Delay, s/veh

0

, ,													
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\$			et 👘			्र		
Traffic Vol, veh/h	0	0	0	1	0	0	0	526	0	1	623	0	
Future Vol, veh/h	0	0	0	1	0	0	0	526	0	1	623	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-1	-	-	-3	-	-	4	-	-	-3	-	
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91	
Heavy Vehicles, %	2	0	2	0	0	0	0	1	0	0	1	0	
Mvmt Flow	0	0	0	1	0	0	0	578	0	1	685	0	

Major/Minor	Minor2		1	Minor1		Ν	lajor1		Ν	1ajor2			
Conflicting Flow All	1265	1265	685	1265	1265	578	-	0	0	578	0	0	
Stage 1	687	687	-	578	578	-	-	-	-	-	-	-	
Stage 2	578	578	-	687	687	-	-	-	-	-	-	-	
Critical Hdwy	6.92	6.3	6.12	6.5	5.9	5.9	-	-	-	4.1	-	-	
Critical Hdwy Stg 1	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4	3.318	3.5	4	3.3	-	-	-	2.2	-	-	
Pot Cap-1 Maneuver	157	183	457	182	211	545	0	-	-	1006	-	0	
Stage 1	454	468	-	556	555	-	0	-	-	-	-	0	
Stage 2	518	521	-	494	505	-	0	-	-	-	-	0	
Platoon blocked, %								-	-		-		
Mov Cap-1 Maneuver	157	183	457	182	211	545	-	-	-	1006	-	-	
Mov Cap-2 Maneuver	157	183	-	182	211	-	-	-	-	-	-	-	
Stage 1	454	467	-	556	555	-	-	-	-	-	-	-	
Stage 2	518	521	-	493	504	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	0	24.9	0	0	
HCM LOS	А	С			

Minor Lane/Major Mvmt	NBT	NBR EBI	Ln1V	VBLn1	SBL	SBT	
Capacity (veh/h)	-	-	-	182	1006	-	
HCM Lane V/C Ratio	-	-	-	0.006	0.001	-	
HCM Control Delay (s)	-	-	0	24.9	8.6	0	
HCM Lane LOS	-	-	А	С	Α	Α	
HCM 95th %tile Q(veh)	-	-	-	0	0	-	

Int	Delav	, s/veh
ΠIL	Delay	, 3/ 1011

Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ef 👘			ا
Traffic Vol, veh/h	1	3	534	1	2	640
Future Vol, veh/h	1	3	534	1	2	640
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	,# 0	-	0	-	-	0
Grade, %	-3	-	4	-	-	-2
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	0	0	1	0	0	1
Mvmt Flow	1	3	607	1	2	727

Major/Minor	Minor1	Μ	lajor1	Μ	lajor2	
Conflicting Flow All	1339	608	0	0	608	0
Stage 1	608	-	-	-	-	-
Stage 2	731	-	-	-	-	-
Critical Hdwy	5.8	5.9	-	-	4.1	-
Critical Hdwy Stg 1	4.8	-	-	-	-	-
Critical Hdwy Stg 2	4.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	213	525	-	-	980	-
Stage 1	606	-	-	-	-	-
Stage 2	542	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	212	525	-	-	980	-
Mov Cap-2 Maneuver	212	-	-	-	-	-
Stage 1	606	-	-	-	-	-
Stage 2	540	-	-	-	-	-
Approach	WB		NB		SB	

Approach	WB	NB	SB	
HCM Control Delay, s	14.5	0	0	
HCM LOS	В			

Minor Lane/Major Mvmt	NBT	NBRW	'BLn1	SBL	SBT	
Capacity (veh/h)	-	-	383	980	-	
HCM Lane V/C Ratio	-	-	0.012	0.002	-	
HCM Control Delay (s)	-	-	14.5	8.7	0	
HCM Lane LOS	-	-	В	А	А	
HCM 95th %tile Q(veh)	-	-	0	0	-	

Intersection													
Int Delay, s/veh	0.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\$			et			÷		
Traffic Vol, veh/h	0	0	0	2	0	8	0	527	3	4	637	0	
Future Vol, veh/h	0	0	0	2	0	8	0	527	3	4	637	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-1	-	-	-3	-	-	4	-	-	-3	-	
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88	
Heavy Vehicles, %	2	0	2	0	0	0	0	1	0	0	1	0	
Mvmt Flow	0	0	0	2	0	9	0	599	3	5	724	0	

Major/Minor	Minor2		N	Minor1		Ν	lajor1		N	lajor2			
Conflicting Flow All	1339	1336	724	1335	1335	601	-	0	0	602	0	0	
Stage 1	734	734	-	601	601	-	-	-	-	-	-	-	
Stage 2	605	602	-	734	734	-	-	-	-	-	-	-	
Critical Hdwy	6.92	6.3	6.12	6.5	5.9	5.9	-	-	-	4.1	-	-	
Critical Hdwy Stg 1	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4	3.318	3.5	4	3.3	-	-	-	2.2	-	-	
Pot Cap-1 Maneuver	140	167	434	165	194	530	0	-	-	985	-	0	
Stage 1	429	447	-	542	544	-	0	-	-	-	-	0	
Stage 2	501	509	-	469	485	-	0	-	-	-	-	0	
Platoon blocked, %								-	-		-		
Mov Cap-1 Maneuver	137	166	434	164	192	530	-	-	-	985	-	-	
Mov Cap-2 Maneuver	137	166	-	164	192	-	-	-	-	-	-	-	
Stage 1	429	443	-	542	544	-	-	-	-	-	-	-	
Stage 2	492	509	-	465	481	-	-	-	-	-	-	-	
A 1							ND			0.0			

Approach	EB	WB	NB	SB	
HCM Control Delay, s	0	15.2	0	0.1	
HCM LOS	А	С			

Minor Lane/Major Mvmt	NBT	NBR EE	3Ln1V	VBLn1	SBL	SBT
Capacity (veh/h)	-	-	-	366	985	-
HCM Lane V/C Ratio	-	-	-	0.031	0.005	-
HCM Control Delay (s)	-	-	0	15.2	8.7	0
HCM Lane LOS	-	-	Α	С	А	А
HCM 95th %tile Q(veh)	-	-	-	0.1	0	-

Int	Delav	. s/veh	

Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		4			ا
Traffic Vol, veh/h	1	3	575	1	3	574
Future Vol, veh/h	1	3	575	1	3	574
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	# 0	-	0	-	-	0
Grade, %	-3	-	4	-	-	-2
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	0	0	5	0	0	3
Mvmt Flow	1	3	612	1	3	611

Major/Minor	Minor1	М	lajor1	Ν	lajor2	
Conflicting Flow All	1230	613	0	0	613	0
Stage 1	613	-	-	-	-	-
Stage 2	617	-	-	-	-	-
Critical Hdwy	5.8	5.9	-	-	4.1	-
Critical Hdwy Stg 1	4.8	-	-	-	-	-
Critical Hdwy Stg 2	4.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	243	522	-	-	976	-
Stage 1	603	-	-	-	-	-
Stage 2	601	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve	r 242	522	-	-	976	-
Mov Cap-2 Maneuve	r 242	-	-	-	-	-
Stage 1	603	-	-	-	-	-
Stage 2	598	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s	14	0	0
HCM LOS	В		

Minor Lane/Major Mvmt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)	-	-	405	976	-
HCM Lane V/C Ratio	-	-	0.011	0.003	-
HCM Control Delay (s)	-	-	14	8.7	0
HCM Lane LOS	-	-	В	А	А
HCM 95th %tile Q(veh)	-	-	0	0	-

Intersection												
Int Delay, s/veh	0.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 44			- 44			4			- 4	
Traffic Vol, veh/h	6	0	5	3	0	1	7	569	3	1	567	7
Future Vol, veh/h	6	0	5	3	0	1	7	569	3	1	567	7
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	-1	-	-	-3	-	-	4	-	-	-3	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	0	2	0	0	0	0	5	0	0	3	0
Mvmt Flow	6	0	5	3	0	1	7	605	3	1	603	7

Major/Minor	Minor2		Ν	/linor1		Ν	/lajor1		N	lajor2			
Conflicting Flow All	1230	1231	607	1232	1233	607	610	0	0	608	0	0	
Stage 1	609	609	-	621	621	-	-	-	-	-	-	-	
Stage 2	621	622	-	611	612	-	-	-	-	-	-	-	
Critical Hdwy	6.92	6.3	6.12	6.5	5.9	5.9	4.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4	3.318	3.5	4	3.3	2.2	-	-	2.2	-	-	
Pot Cap-1 Maneuver	165	192	505	191	219	526	979	-	-	980	-	-	
Stage 1	499	505	-	531	535	-	-	-	-	-	-	-	
Stage 2	492	499	-	536	539	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	163	190	505	187	216	526	979	-	-	980	-	-	
Mov Cap-2 Maneuver	163	190	-	187	216	-	-	-	-	-	-	-	
Stage 1	494	504	-	525	529	-	-	-	-	-	-	-	
Stage 2	486	494	-	529	538	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	21.1	21.5	0.1	0	
HCM LOS	С	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR E	BLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	979	-	-	235	223	980	-	-
HCM Lane V/C Ratio	0.008	-	-	0.05	0.019	0.001	-	-
HCM Control Delay (s)	8.7	-	-	21.1	21.5	8.7	0	-
HCM Lane LOS	А	-	-	С	С	Α	А	-
HCM 95th %tile Q(veh)	0	-	-	0.2	0.1	0	-	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		et 👘			- द
Traffic Vol, veh/h	1	0	544	0	1	647
Future Vol, veh/h	1	0	544	0	1	647
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	-3	-	4	-	-	-2
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	0	0	1	0	0	1
Mvmt Flow	1	0	598	0	1	711

Major/Minor	Minor1	Μ	lajor1	Ν	lajor2	
Conflicting Flow All	1311	598	0	0	598	0
Stage 1	598	-	-	-	-	-
Stage 2	713	-	-	-	-	-
Critical Hdwy	5.8	5.9	-	-	4.1	-
Critical Hdwy Stg 1	4.8	-	-	-	-	-
Critical Hdwy Stg 2	4.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	220	532	-	-	989	-
Stage 1	611	-	-	-	-	-
Stage 2	551	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	220	532	-	-	989	-
Mov Cap-2 Maneuver	220	-	-	-	-	-
Stage 1	611	-	-	-	-	-
Stage 2	550	-	-	-	-	-
Annroach	\//R		NR		SB	

Approach	WB	NB	SB	
HCM Control Delay, s	21.4	0	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBT	NBRW	/BLn1	SBL	SBT
Capacity (veh/h)	-	-	220	989	-
HCM Lane V/C Ratio	-	-	0.005	0.001	-
HCM Control Delay (s)	-	-	21.4	8.6	0
HCM Lane LOS	-	-	С	А	А
HCM 95th %tile Q(veh)	-	-	0	0	-

Intersection													
Int Delay, s/veh	0.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		- 🗘			- 🗘			4			- 4		
Traffic Vol, veh/h	5	0	4	1	0	0	7	539	0	1	638	9	
Future Vol, veh/h	5	0	4	1	0	0	7	539	0	1	638	9	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-1	-	-	-3	-	-	4	-	-	-3	-	
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91	
Heavy Vehicles, %	2	0	2	0	0	0	0	1	0	0	1	0	
Mvmt Flow	5	0	4	1	0	0	8	592	0	1	701	10	

Major/Minor	Minor2		1	Minor1		Ν	/lajor1		N	lajor2			
Conflicting Flow All	1316	1316	706	1318	1321	592	711	0	0	592	0	0	
Stage 1	708	708	-	608	608	-	-	-	-	-	-	-	
Stage 2	608	608	-	710	713	-	-	-	-	-	-	-	
Critical Hdwy	6.92	6.3	6.12	6.5	5.9	5.9	4.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4	3.318	3.5	4	3.3	2.2	-	-	2.2	-	-	
Pot Cap-1 Maneuver	145	171	444	169	197	536	898	-	-	994	-	-	
Stage 1	443	458	-	538	541	-	-	-	-	-	-	-	
Stage 2	499	506	-	481	494	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	143	168	444	165	194	536	898	-	-	994	-	-	
Mov Cap-2 Maneuver	143	168	-	165	194	-	-	-	-	-	-	-	
Stage 1	437	457	-	531	534	-	-	-	-	-	-	-	
Stage 2	493	499	-	475	493	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	23.4	27	0.1	0	
HCM LOS	С	D			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1\	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	898	-	-	205	165	994	-	-
HCM Lane V/C Ratio	0.009	-	-	0.048	0.007	0.001	-	-
HCM Control Delay (s)	9	-	-	23.4	27	8.6	0	-
HCM Lane LOS	А	-	-	С	D	Α	А	-
HCM 95th %tile Q(veh)	0	-	-	0.2	0	0	-	-

Int	Delav	s/veh	
	Duidy.		

Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ef 👘			ا
Traffic Vol, veh/h	1	3	557	1	2	666
Future Vol, veh/h	1	3	557	1	2	666
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	-3	-	4	-	-	-2
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	0	0	1	0	0	1
Mvmt Flow	1	3	633	1	2	757

Major/Minor	Minor1	М	lajor1	Ν	lajor2	
Conflicting Flow All	1395	634	0	0	634	0
Stage 1	634	-	-	-	-	-
Stage 2	761	-	-	-	-	-
Critical Hdwy	5.8	5.9	-	-	4.1	-
Critical Hdwy Stg 1	4.8	-	-	-	-	-
Critical Hdwy Stg 2	4.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	199	509	-	-	959	-
Stage 1	592	-	-	-	-	-
Stage 2	528	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	· 198	509	-	-	959	-
Mov Cap-2 Maneuver	· 198	-	-	-	-	-
Stage 1	592	-	-	-	-	-
Stage 2	526	-	-	-	-	-
•						

Approach	WB	NB	SB
HCM Control Delay, s	15	0	0
HCM LOS	С		

Minor Lane/Major Mvmt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)	-	-	365	959	-
HCM Lane V/C Ratio	-	-	0.012	0.002	-
HCM Control Delay (s)	-	-	15	8.8	0
HCM Lane LOS	-	-	С	А	А
HCM 95th %tile Q(veh)	-	-	0	0	-

Intersection													
Int Delay, s/veh	0.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			- 🗘			4			- 4		
Traffic Vol, veh/h	7	0	7	2	0	8	7	543	3	4	656	7	
Future Vol, veh/h	7	0	7	2	0	8	7	543	3	4	656	7	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-1	-	-	-3	-	-	4	-	-	-3	-	
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88	
Heavy Vehicles, %	2	0	2	0	0	0	0	1	0	0	1	0	
Mvmt Flow	8	0	8	2	0	9	8	617	3	5	745	8	

Major/Minor	Minor2		1	Minor1		Ν	lajor1		N	lajor2			
Conflicting Flow All	1398	1395	749	1398	1398	619	753	0	0	620	0	0	
Stage 1	759	759	-	635	635	-	-	-	-	-	-	-	
Stage 2	639	636	-	763	763	-	-	-	-	-	-	-	
Critical Hdwy	6.92	6.3	6.12	6.5	5.9	5.9	4.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4	3.318	3.5	4	3.3	2.2	-	-	2.2	-	-	
Pot Cap-1 Maneuver	128	154	420	151	179	518	866	-	-	970	-	-	
Stage 1	416	436	-	523	529	-	-	-	-	-	-	-	
Stage 2	481	492	-	454	472	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	124	150	420	146	175	518	866	-	-	970	-	-	
Mov Cap-2 Maneuver	124	150	-	146	175	-	-	-	-	-	-	-	
Stage 1	410	432	-	516	522	-	-	-	-	-	-	-	
Stage 2	466	485	-	441	468	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	25.6	15.9	0.1	0.1	
HCM LOS	D	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	866	-	-	191	343	970	-	-
HCM Lane V/C Ratio	0.009	-	-	0.083	0.033	0.005	-	-
HCM Control Delay (s)	9.2	-	-	25.6	15.9	8.7	0	-
HCM Lane LOS	А	-	-	D	С	Α	Α	-
HCM 95th %tile Q(veh)	0	-	-	0.3	0.1	0	-	-

Int Delay, s/veh	0.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations					\$			4			\$		
Traffic Vol, veh/h	0	0	0	1	0	3	49	593	1	3	543	49	
Future Vol, veh/h	0	0	0	1	0	3	49	593	1	3	543	49	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	-3	-	-	4	-	-	-2	-	
Peak Hour Factor	25	25	25	94	94	94	94	94	94	94	94	94	
Heavy Vehicles, %	0	0	0	0	0	0	2	5	0	0	3	2	
Mvmt Flow	0	0	0	1	0	3	52	631	1	3	578	52	

Major/Minor	Minor1			Major1		Ν	lajor2	
Conflicting Flow All	1346	1372	632	630	0	0	632	0
Stage 1	736	736	-	-	-	-	-	-
Stage 2	610	636	-	-	-	-	-	-
Critical Hdwy	5.8	5.9	5.9	4.12	-	-	4.1	-
Critical Hdwy Stg 1	4.8	4.9	-	-	-	-	-	-
Critical Hdwy Stg 2	4.8	4.9	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	2.218	-	-	2.2	-
Pot Cap-1 Maneuver	211	185	510	952	-	-	960	-
Stage 1	540	484	-	-	-	-	-	-
Stage 2	605	528	-	-	-	-	-	-
Platoon blocked, %					-	-		-
Mov Cap-1 Maneuver	192	0	510	952	-	-	960	-
Mov Cap-2 Maneuver	192	0	-	-	-	-	-	-
Stage 1	495	0	-	-	-	-	-	-
Stage 2	602	0	-	-	-	-	-	-
Approach	WB			NB			SB	
HCM Control Delay, s	15.1			0.7			0	
HCM LOS	С							

Minor Lane/Major Mvmt	NBL	NBT	NBRV	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	952	-	-	361	960	-	-
HCM Lane V/C Ratio	0.055	-	-	0.012	0.003	-	-
HCM Control Delay (s)	9	0	-	15.1	8.8	0	-
HCM Lane LOS	А	А	-	С	А	А	-
HCM 95th %tile Q(veh)	0.2	-	-	0	0	-	-

Intersection												
Int Delay, s/veh	2.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			et -			÷	
Traffic Vol, veh/h	48	0	47	3	0	1	0	594	3	1	543	0
Future Vol, veh/h	48	0	47	3	0	1	0	594	3	1	543	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	-1	-	-	-3	-	-	4	-	-	-3	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	0	2	0	0	0	0	5	0	0	3	0
Mvmt Flow	51	0	50	3	0	1	0	632	3	1	578	0

Major/Minor	Minor2		N	/linor1		Ν	lajor1		N	lajor2				
Conflicting Flow All	1214	1215	578	1239	1214	634	-	0	0	635	0	0		
Stage 1	580	580	-	634	634	-	-	-	-	-	-	-		
Stage 2	634	635	-	605	580	-	-	-	-	-	-	-		
Critical Hdwy	6.92	6.3	6.12	6.5	5.9	5.9	-	-	-	4.1	-	-		
Critical Hdwy Stg 1	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-		
Follow-up Hdwy	3.518	4	3.318	3.5	4	3.3	-	-	-	2.2	-	-		
Pot Cap-1 Maneuver	169	196	524	189	224	509	0	-	-	958	-	0		
Stage 1	516	520	-	523	529	-	0	-	-	-	-	0		
Stage 2	484	493	-	540	554	-	0	-	-	-	-	0		
Platoon blocked, %								-	-		-			
Mov Cap-1 Maneuver	168	196	524	171	224	509	-	-	-	958	-	-		
Mov Cap-2 Maneuver	168	196	-	171	224	-	-	-	-	-	-	-		
Stage 1	516	519	-	523	529	-	-	-	-	-	-	-		
Stage 2	483	493	-	487	553	-	-	-	-	-	-	-		

Approach	EB	WB	NB	SB	
HCM Control Delay, s	28.4	22.9	0	0	
HCM LOS	D	С			

Minor Lane/Major Mvmt	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	
Capacity (veh/h)	-	-	253	205	958	-	
HCM Lane V/C Ratio	-	-	0.399	0.021	0.001	-	
HCM Control Delay (s)	-	-	28.4	22.9	8.8	0	
HCM Lane LOS	-	-	D	С	А	Α	
HCM 95th %tile Q(veh)	-	-	1.8	0.1	0	-	

Intersection													
Int Delay, s/veh	0.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations					\$			4			\$		
Traffic Vol, veh/h	0	0	0	1	0	0	23	554	0	1	630	24	
Future Vol, veh/h	0	0	0	1	0	0	23	554	0	1	630	24	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	-3	-	-	4	-	-	-2	-	
Peak Hour Factor	25	25	25	91	91	91	91	91	91	91	91	91	
Heavy Vehicles, %	0	0	0	0	0	0	2	1	0	0	1	2	
Mvmt Flow	0	0	0	1	0	0	25	609	0	1	692	26	

Major/Minor	Min	or1		Major1		Ν	/lajor2			
Conflicting Flow All	1:	366 1379	9 609	718	0	0	609	0	0	
Stage 1	(659 659) -	-	-	-	-	-	-	
Stage 2	-	707 720) -	-	-	-	-	-	-	
Critical Hdwy		5.8 5.9		4.12	-	-	4.1	-	-	
Critical Hdwy Stg 1		4.8 4.9		-	-	-	-	-	-	
Critical Hdwy Stg 2		4.8 4.9		-	-	-	-	-	-	
Follow-up Hdwy				2.218	-	-	2.2	-	-	
Pot Cap-1 Maneuver	2	206 184		883	-	-	979	-	-	
Stage 1	!	579 518	3-	-	-	-	-	-	-	
Stage 2	<u> </u>	554 49 ⁻	1 -	-	-	-	-	-	-	
Platoon blocked, %					-	-		-	-	
Mov Cap-1 Maneuver		197 () 525	883	-	-	979	-	-	
Mov Cap-2 Maneuver		197 () -	-	-	-	-	-	-	
Stage 1	<u> </u>	554 () -	-	-	-	-	-	-	
Stage 2	!	553 () -	-	-	-	-	-	-	
Approach		NB		NB			SB			
HCM Control Delay, s	2	3.4		0.4			0			
HCM LOS		С								
Minor Long/Major Mymt			1 001	ODT	CDD					

Minor Lane/Major Mvmt	NBL	NBT	NBRV	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	883	-	-	197	979	-	-	
HCM Lane V/C Ratio	0.029	-	-	0.006	0.001	-	-	
HCM Control Delay (s)	9.2	0	-	23.4	8.7	0	-	
HCM Lane LOS	А	А	-	С	А	А	-	
HCM 95th %tile Q(veh)	0.1	-	-	0	0	-	-	

Int Delay, s/veh

1

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
	EDL		EDN	VVDL		VVDN	INDL		NDN	SDL	SDI	JDR	
Lane Configurations		- 4 >			- 4 >			ર્ન 👘			- ଐ		
Traffic Vol, veh/h	24	0	23	1	0	0	0	553	0	1	630	0	
Future Vol, veh/h	24	0	23	1	0	0	0	553	0	1	630	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-1	-	-	-3	-	-	4	-	-	-3	-	
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91	
Heavy Vehicles, %	2	0	2	0	0	0	0	1	0	0	1	0	
Mvmt Flow	26	0	25	1	0	0	0	608	0	1	692	0	

Major/Minor	Minor2		N	Minor1		М	ajor1		N	lajor2			
Conflicting Flow All	1302	1302	692	1315	1302	608	-	0	0	608	0	0	
Stage 1	694	694	-	608	608	-	-	-	-	-	-	-	
Stage 2	608	608	-	707	694	-	-	-	-	-	-	-	
Critical Hdwy	6.92	6.3	6.12	6.5	5.9	5.9	-	-	-	4.1	-	-	
Critical Hdwy Stg 1	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4	3.318	3.5	4	3.3	-	-	-	2.2	-	-	
Pot Cap-1 Maneuver	148	174	453	170	202	525	0	-	-	980	-	0	
Stage 1	450	465	-	538	541	-	0	-	-	-	-	0	
Stage 2	499	506	-	483	502	-	0	-	-	-	-	0	
Platoon blocked, %								-	-		-		
Mov Cap-1 Maneuver	148	174	453	160	202	525	-	-	-	980	-	-	
Mov Cap-2 Maneuver	148	174	-	160	202	-	-	-	-	-	-	-	
Stage 1	450	464	-	538	541	-	-	-	-	-	-	-	
Stage 2	499	506	-	455	501	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	26.2	27.7	0	0	
HCM LOS	D	D			

Minor Lane/Major Mvmt	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	
Capacity (veh/h)	-	-	221	160	980	-	
HCM Lane V/C Ratio	-	-	0.234	0.007	0.001	-	
HCM Control Delay (s)	-	-	26.2	27.7	8.7	0	
HCM Lane LOS	-	-	D	D	Α	Α	
HCM 95th %tile Q(veh)	-	-	0.9	0	0	-	

Int Delay, s/veh	0.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations					- 44			- 40			- 40		
Traffic Vol, veh/h	0	0	0	1	0	3	48	580	1	2	641	48	
Future Vol, veh/h	0	0	0	1	0	3	48	580	1	2	641	48	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	-3	-	-	4	-	-	-2	-	
Peak Hour Factor	25	25	25	88	88	88	88	88	88	88	88	88	
Heavy Vehicles, %	0	0	0	0	0	0	2	1	0	0	1	2	
Mvmt Flow	0	0	0	1	0	3	55	659	1	2	728	55	

Major/Minor	Minor1			Major1		Ν	lajor2			
Conflicting Flow All	1530	1557	660	783	0	0	660	0	0	
Stage 1	770	770	-	-	-	-	-	-	-	
Stage 2	760	787	-	-	-	-	-	-	-	
Critical Hdwy	5.8	5.9	5.9	4.12	-	-	4.1	-	-	
Critical Hdwy Stg 1	4.8	4.9	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	4.8	4.9	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	2.218	-	-	2.2	-	-	
Pot Cap-1 Maneuver	168	148	493	835	-	-	938	-	-	
Stage 1	523	470	-	-	-	-	-	-	-	
Stage 2	528	463	-	-	-	-	-	-	-	
Platoon blocked, %					-	-		-	-	
Mov Cap-1 Maneuver	150	0	493	835	-	-	938	-	-	
Mov Cap-2 Maneuver	150	0	-	-	-	-	-	-	-	
Stage 1	469	0	-	-	-	-	-	-	-	
Stage 2	526	0	-	-	-	-	-	-	-	
Approach	WB			NB			SB			
HCM Control Delay, s	16.6			0.7			0			
HCM LOS	С									
			0.01	0.D.T						

Minor Lane/Major Mvmt	NBL	NBT	NBRV	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	835	-	-	314	938	-	-	
HCM Lane V/C Ratio	0.065	-	-	0.014	0.002	-	-	
HCM Control Delay (s)	9.6	0	-	16.6	8.8	0	-	
HCM Lane LOS	А	А	-	С	А	А	-	
HCM 95th %tile Q(veh)	0.2	-	-	0	0	-	-	

Intersection												
Int Delay, s/veh	3.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 🗘			- 🗘			4			्र	
Traffic Vol, veh/h	48	0	47	2	0	8	0	573	3	4	638	0
Future Vol, veh/h	48	0	47	2	0	8	0	573	3	4	638	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	-1	-	-	-3	-	-	4	-	-	-3	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	0	2	0	0	0	0	1	0	0	1	0
Mvmt Flow	55	0	53	2	0	9	0	651	3	5	725	0

Major/Minor	Minor2		1	Minor1		Μ	ajor1		N	lajor2			
Conflicting Flow All	1392	1389	725	1415	1388	653	-	0	0	654	0	0	
Stage 1	735	735	-	653	653	-	-	-	-	-	-	-	
Stage 2	657	654	-	762	735	-	-	-	-	-	-	-	
Critical Hdwy	6.92	6.3	6.12	6.5	5.9	5.9	-	-	-	4.1	-	-	
Critical Hdwy Stg 1	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	5.92	5.3	-	5.5	4.9	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4	3.318	3.5	4	3.3	-	-	-	2.2	-	-	
Pot Cap-1 Maneuver	129	155	434	147	182	497	0	-	-	943	-	0	
Stage 1	428	446	-	512	520	-	0	-	-	-	-	0	
Stage 2	471	483	-	455	484	-	0	-	-	-	-	0	
Platoon blocked, %								-	-		-		
Mov Cap-1 Maneuver	126	154	434	128	180	497	-	-	-	943	-	-	
Mov Cap-2 Maneuver	126	154	-	128	180	-	-	-	-	-	-	-	
Stage 1	428	442	-	512	520	-	-	-	-	-	-	-	
Stage 2	462	483	-	395	480	-	-	-	-	-	-	-	
-													
										~-			

Approach	EB	WB	NB	SB	
HCM Control Delay, s	44.6	16.9	0	0.1	
HCM LOS	Е	С			

Minor Lane/Major Mvmt	NBT	NBR E	EBLn1V	WBLn1	SBL	SBT	
Capacity (veh/h)	-	-	194	315	943	-	
HCM Lane V/C Ratio	-	-	0.556	0.036	0.005	-	
HCM Control Delay (s)	-	-	44.6	16.9	8.8	0	
HCM Lane LOS	-	-	Е	С	А	Α	
HCM 95th %tile Q(veh)	-	-	3	0.1	0	-	

May 24, 2021

Preliminary Cut/Fill Report:

The preliminary cut/fill calculations, provided below, are approximate and are based on a comparison of the site's existing grade to the proposed grade, as shown on the Grading Plan, prepared by our office, dated November 12, 2020, last revised May 24, 2021.

Approximate Proposed Cut On-Site = 1,352.940 Cu. Yd.

Approximate Proposed Fill On-Site = 3.432 Cu. Yd.

Approximate Net Cut/Fill On-Site = 1,349.508 Cu. Yd. (Fill)

www.dynamicec.com

Lake Como, NJ • Chester, NJ • Toms River, NJ • Newark, NJ • Newtown, PA • Philadelphia, PA Bethlehem, PA • Allen, TX • Houston, TX • Austin, TX • Delray Beach, FL

DRAINAGE STATEMENT

For

ABDD Capital, LLC

Proposed Dunkin' Drive-Thru Restaurant

Block 20.10, Lot 5.01 195 Godwin Avenue (CR 84) Borough of Midland Park, Bergen County, New Jersey

Prepared by:

1904 Main Street Lake Como, NJ 07719 (732) 974-0198

Joshua M. Sewald, PE, PP NJ Professional Engineer License #52908

November 2020 DEC # 3486-99-001

TABLE OF CONTENTS

Section

Page

I.	Drainage Summary	2
II.	Existing Site Conditions	2
III.	Proposed Site Conditions	3
IV.	Runoff Rate Reduction Performance	3
V.	Conclusion	4

APPENDIX

- NRCS Web Soil Survey
- Runoff Curve Number (CN) Calculations Existing
- Runoff Curve Number (CN) Calculations Proposed
- Hydrograph Summary Reports Existing & Proposed Conditions, 2, 10 & 100 Year Storm Events
- Stormwater Collection System Calculations (Pipe Sizing)
- Drainage Area Maps

I. Drainage Summary

This Drainage Statement has been prepared to define and analyze the stormwater drainage conditions that would occur as a result of the redevelopment of Block 20.01, Lot 5.01 in the Borough of Midland Park, Bergen County, New Jersey.

The subject site consists of 0.50 acres (21,968 SF) and is located at 195 Godwin Avenue (CR 84) and is presently developed with a 2,534 SF Friendly's Restaurant. The site is bordered to the north by the Borough of Midland Park Post Office, to the east by Godwin Avenue with commercial uses beyond, to the south by the Midland Park Christian Reformed Church and to the west by residential uses with Van Blarcom Avenue beyond.

The existing conditions of the tract have been verified by the Boundary and Topographic Survey, prepared by Dynamic Survey, dated 08/10/2020, last revised 11/10/2020.

The proposed site improvements consist of demolishing the existing building for the construction of a 2,119 SF Dunkin' Drive-Thru Restaurant. Associated improvements include parking and access, lighting, landscaping and associated site features. It is important to note that the development will result in a net reduction in impervious area of approximately 5.5% (1,206 SF).

Based on the fact that the proposed development will not result in more than one (1) acre of land disturbance, and will not result in an increase of impervious coverage on-site by ¹/₄ acre or more, the project is not classified as a "major development" and is not subject to the NJDEP Stormwater Management Rules (NJAC 7:8). Further, the proposed development decreases the area of impervious surfaces on-site. Therefore, the proposed project is not subject to the New Jersey Standards for Soil Erosion and Sediment Control runoff rate reduction requirements. It should be noted that due to the decrease in impervious coverage on-site, the peak runoff rates will be reduced under proposed conditions.

II. Existing Site Conditions

The subject site has been evaluated with the following drainage sub-watershed areas as depicted on the Existing Drainage Area Map included within the Appendix of this report:

Existing Study Area Godwin: This area consists of the majority of the subject site including the existing building, parking and access, and open space areas along the Godwin Avenue frontage. Stormwater runoff from this area is tributary to the existing stormwater conveyance system within Godwin Avenue via the existing on-site stormwater management facilities and overland flow.

Existing Study Area West: This area consists of open space located adjacent to the westerly property line. Stormwater runoff from this area drains to the west via overland flow.

Based upon the Bergen County Soil Survey, the soil types native to the site include:

SOIL TYPE	SOIL TYPE NAME	HYDROLOGIC SOIL GROUP
DuuB	Dunellen-Urban land complex, 3 to 8 percent slopes	A ,
DuuC	Dunellen-Urban land complex, 8 to 15 percent slopes	A

III. Proposed Site Conditions

The proposed site conditions have been evaluated using the following drainage sub-watershed area as depicted on the Proposed Drainage Area Map included within the Appendix of this report:

Proposed Study Area Godwin: This area consists of the majority of the subject site including the proposed building, parking and access, and open space areas along the Godwin Avenue frontage. The majority of the stormwater runoff from this area will be collected by onsite stormwater conveyance system and routed to the existing stormwater conveyance system within Godwin Avenue and overland flow.

Existing Study Area West: This area consists of open space located at the western side of the site. Stormwater runoff from this area will drain to the west of via overland flow as it does in the existing condition.

IV. <u>Runoff Rate Reduction Performance</u>

As noted previously, based on the fact that the project does not meet the definition of a major development under NJAC 7:8, the project is not subject to the stormwater runoff quantity, and groundwater recharge standards set forth by the NJDEP Stormwater Management Rules (NJAC 7:8). Additionally, the project will result in a reduction of impervious coverage on-site.

The following is a comparison of the pre and post-development runoff rates for the subject site.

Pre-Development and Post Development Peak Runoff Results Summary – Study Area Godwin

	EXISTING RUNOFF RATE (CFS)	PROPOSED RUNOFF RATE (CFS)	REDUCTION IN RUNOFF RATE (CFS)
2-Year	1.036	0.959	0.077
10-Year	1.584	1.465	0.119
100-Year	2.732	2.589	0.174

Pre-Development and Post Development Peak Runoff Results Summary – Study Area West

	EXISTING RUNOFF RATE (CFS)	PROPOSED RUNOFF RATE (CFS)	REDUCTION IN RUNOFF RATE (CFS)
2-Year	0.000	0.000	0.000
10-Year	0.001	0.000	0.001
100-Year	0.020	0.010	0.010

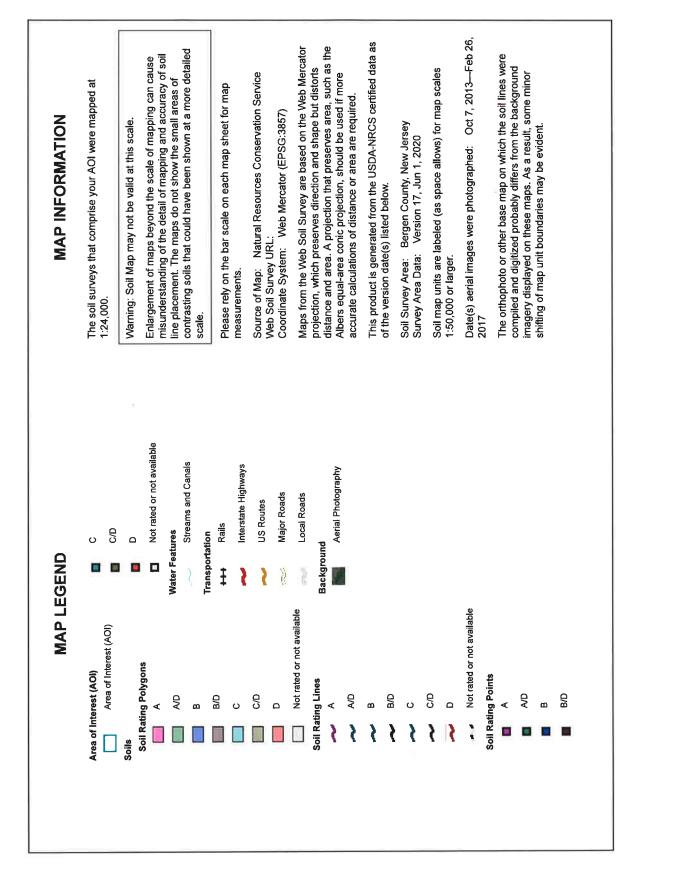
Pre-Development and Post Development Peak Runoff Results Summary - Overall

	EXISTING RUNOFF RATE (CFS)	PROPOSED RUNOFF RATE (CFS)	REDUCTION IN RUNOFF RATE (CFS)
2-Year	1.036	0.959	0.077
10-Year	1.584	1.465	0.119
100-Year	2.749	2.567	0.182

V. <u>Conclusion</u>

The proposed development has been designed with provisions for the safe and efficient control of stormwater runoff in a manner that will not adversely impact the existing drainage patterns, adjacent roadways, or adjacent parcels.

Although the project is exempt from the water quality requirements set forth by NJAC 7:8, the proposed development will result in a net reduction of impervious coverage thereby providing a benefit to the water quality of the stormwater leaving the site. Additionally, the project will promote groundwater recharge by reducing the amount of onsite impervious coverage.


Furthermore, the proposed redevelopment reduces the overall impervious coverage and therefore, reduces the stormwater runoff volume and runoff flow rates for the 2, 10, and 100-year storm events. With this stated, it is evident that the proposed development will not have a negative impact on the existing drainage pattern, water quality, or groundwater recharge on site or within the vicinity of the subject parcel.

APPENDIX

NRCS WEB SOIL SURVEY

Hydrologic Soil Group-Bergen County, New Jersey

USDA Natural Resources Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres In AOI	Percent of AOI
DuuB	Dunellen-Urban land complex, 3 to 8 percent slopes	A	0.5	74.5%
DuuC	Dunellen-Urban land complex, 8 to 15 percent slopes	A	0.2	25.5%
Totals for Area of Inter	rest		0.7	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

RUNOFF CURVE NUMBER (CN) CALCULATIONS – EXISTING

DYNAMIC ENGINEERING

EXISTING DRAINAGE AREA SUMMARY AND AVERAGE CURVE NUMBER (CN) CALCULATIONS

Project: Proposed Dunkin Donuts w/ drive thru Location: Midland Park Job #: 3486-99-001

Computed By: Checked By: Date:

11/5/2020 MSA N

Drainage Area	Impervious	Impervious	Curve	HSG A -	HSG A -	Curve Number (CN)	Avg. Perv.		Total	TC (Min.)
	Area (acre)	Area (sf)	Number	Open	Open	Used	Curve	Pe	Area	
			(CN) Used	d Space Area	Space Area		Number		(acres)	
				(acre)	(sf)			(acres)		
SA West	0.00	10	98	0.02	815	39	39	0.02	0.02	10
SA Godwin Ave	0.40	17,312	98 86	0.09	3,841	39	39	0.09	0.49	10
Total	0.40	17312		0.11	4656			0.11	0.50	

A Soil Dunellen-Urban land complex, 3 to 8 percent slopes	A Soil Dunellen-Urban land complex, 8 to 15 percent slopes					
HSG	HSG	i	(CN)			
DuuB	DuuC		inoff Curve Number (C	(HSG A)	98	39
- vey	rey -		Runo			
Per County Soil Sun	Per County Soil Sun			Description	Impervious Surface	Open Space (lawn) (good)

30

Woods (good

RUNOFF CURVE NUMBER (CN) CALCULATIONS – PROPOSED

DYNAMIC ENGINEERING

PROPOSED DRAINAGE AREA SUMMARY AND AVERAGE CURVE NUMBER (CN) CALCULATIONS

Project: Proposed Dunkin Donuts w/ drive thru Location: Midland Park Job #: 3486-99-001

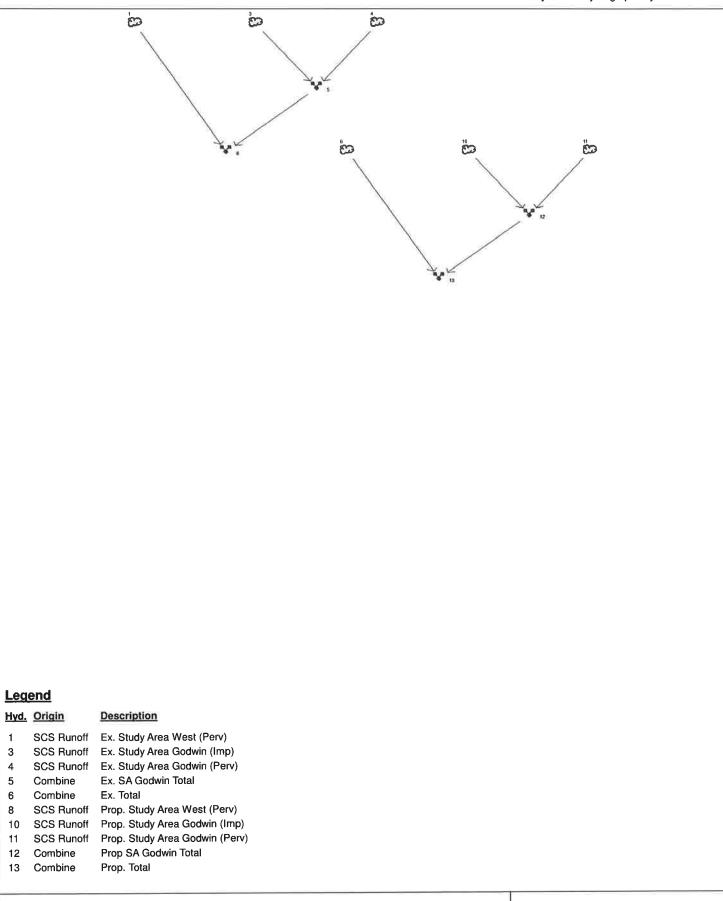
Computed By: Checked By: Date:

11/5/2020 MSA M

TC (Min.)		10	10	
Total Area (acres)		0.01	0.49	0.50
Total Pervious Area	(acres)	0.01	0.12	0.13
Avg. Perv. Curve Number		39	39	
Curve Number (CN) Used		39	39	
HSG A - Open Space Area	(sf)	609	5,253	5862
r Open d Space Area	(acre)	0.01	0.12	0.13
Curve Number (CN) Used		98	98	
Impervious Area (sf)		-	16,106	16106
Impervious Impervious Area (acre) Area (sf)		0.00	0.37	0.37
Drainage Area		SA West	SA Godwin Ave	Total

		. <u> </u>	r (CN)	Runoff Curve Number (CN (HSG A)	Description Impervious Surface	
Dunellen-Urban land complex, 8 to 15 percent slopes	Soil	A	HSG	DuuC	Per County Soil Survey -	
Dunellen-Urban land complex, 3 to 8 percent slopes	Soil	A	HSG	DuuB	Per County Soil Survey -	L

39


Space (lawn) (good) Woods (good)

Open

HYDROGRAPH SUMMARY REPORTS – EXISTING & PROPOSED CONDITIONS, 2, 10 & 100 YEAR STORM EVENTS

Watershed Model Schematic

Hydraflow Hydrographs by Intelisolve v9.1

Project: 2020-11-05 Ex. Prop. 2-10-100.gpw

Tuesday, Nov 17, 2020

Hydrograph Return Period Recap

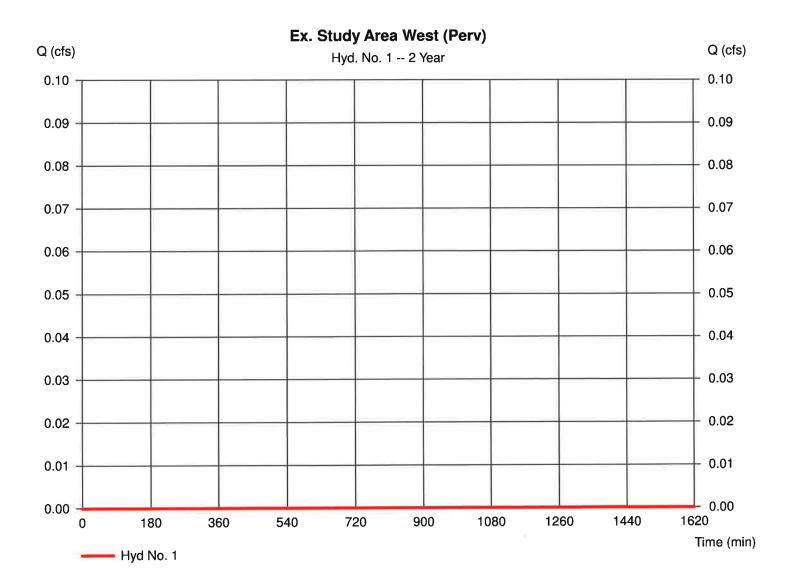
Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No.	Hydrograph	Inflow Hyd(s)				Peak Out	flow (cfs)				Hydrograph description	
10.	type (origin)	nya(s)	1-Yr	2-Yr	3-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	description	
1	SCS Runoff			0.000			0.001			0.020	Ex. Study Area West (Perv)	
3	SCS Runoff	Same and a		1.036			1.584			2.656	Ex. Study Area Godwin (Imp)	
4	SCS Runoff			0.000	(*******		0.003			0.089	Ex. Study Area Godwin (Perv)	
5	Combine	3, 4		1.036		******	1.584		******	2.732	Ex. SA Godwin Total	
6	Combine	1, 5		1.036	Processory of		1.584	*******		2.749	Ex. Total	
8	SCS Runoff	() ()		0.000			0.000			0.010	Prop. Study Area West (Perv)	
10	SCS Runoff			0.959			1.465			2.457	Prop. Study Area Godwin (Imp)	
11	SCS Runoff	02002021		0.000			0.004		C	0.119	Prop. Study Area Godwin (Perv)	
12	Combine	10, 11	(=01000))	0.959	*******	decente r	1.465	issement?"		2.558	Prop SA Godwin Total	
13	Combine	8, 12		0.959	<u>rterest</u> e:		1.465		Carrier and	2.567	Prop. Total	
Pro	j. file: 2020-1	1-05 Ex.	Prop. 2-	10-100.g	gpw				Tu	esday, N	lov 17, 2020	

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	0.000	3	1440	0		<u>220000</u>	1	Ex. Study Area West (Perv)
3	SCS Runoff	1.036	3	726	4,229				Ex. Study Area Godwin (Imp)
4	SCS Runoff	0.000	3	1440	1				Ex. Study Area Godwin (Perv)
5	Combine	1.036	3	726	4,230	3, 4			Ex. SA Godwin Total
6	Combine	1.036	3	726	4,230	1, 5		-	Ex. Total
8	SCS Runoff	0.000	3	1440	0				Prop. Study Area West (Perv)
10	SCS Runoff	0.959	3	726	3,912	-			Prop. Study Area Godwin (Imp)
11	SCS Runoff	0.000	3	1440	1	Section		d aanna e	Prop. Study Area Godwin (Perv)
12	Combine	0.959	3	726	3,913	10, 11		200000	Prop SA Godwin Total
13	Combine	0.959	3	726	3,913	8, 12	: secons:	Carriera.	Prop. Total
202	20-11-05 Ex. I	Prop. 2-1	0-100.gp	w	Return	Period: 2 Ye	ear	Tuesday, N	lov 17, 2020


Hydrograph Report

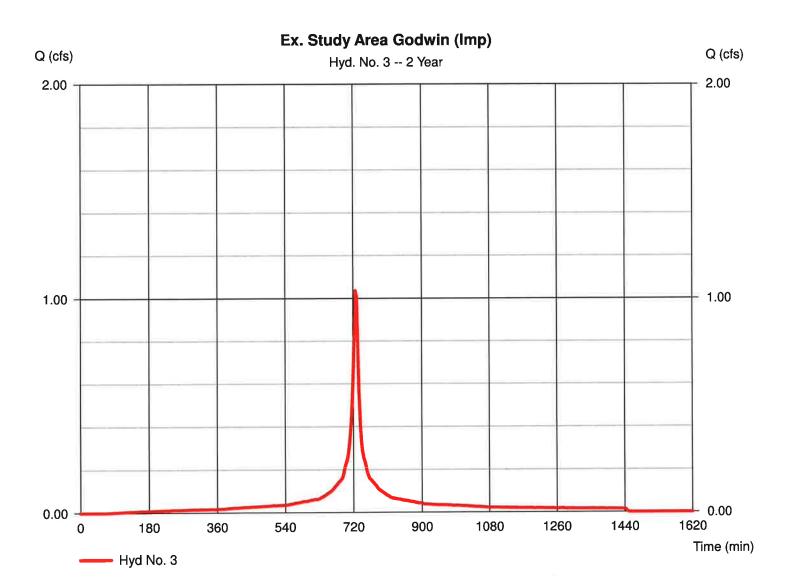
Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 1

Ex. Study Area West (Perv)

SCS Runoff	Peak discharge	= 0.000 cfs
= 2 yrs	Time to peak	= 1440 min
= 3 min	Hyd. volume	= 0 cuft
= 0.020 ac	Curve number	= 39
= 0.0 %	Hydraulic length	= 0 ft
= USER	Time of conc. (Tc)	= 6.00 min
= 3.34 in	Distribution	= Custom
NOAA Atlas 14 Type-D.cds	Shape factor	= 484
	= 2 yrs = 3 min = 0.020 ac = 0.0 % = USER = 3.34 in	= 2 yrsTime to peak= 3 minHyd. volume= 0.020 acCurve number= 0.0 %Hydraulic length= USERTime of conc. (Tc)= 3.34 inDistribution

Tuesday, Nov 17, 2020

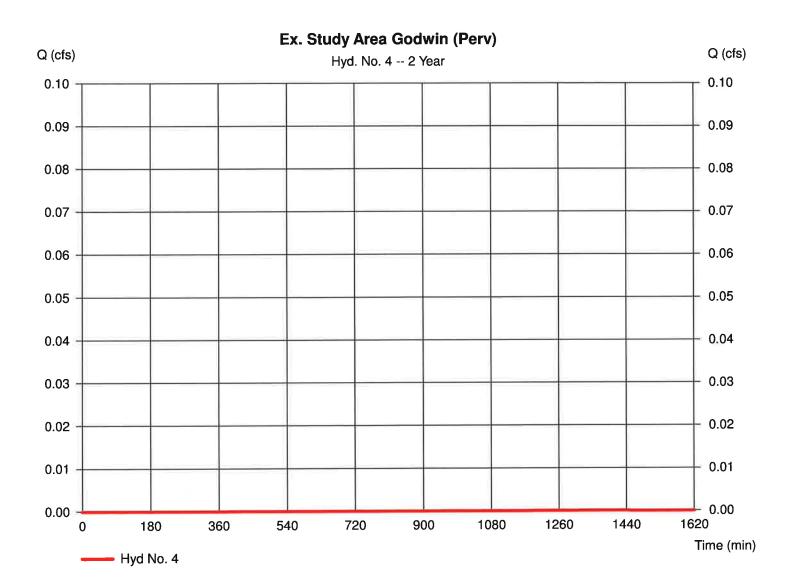

Hydrograph Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

Ex. Study Area Godwin (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.036 cfs
Storm frequency	= 2 yrs	Time to peak	= 726 min
Time interval	= 3 min	Hyd. volume	= 4,229 cuft
Drainage area	= 0.400 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= NOAA Atlas 14 Type-D.cds	Shape factor	= 484

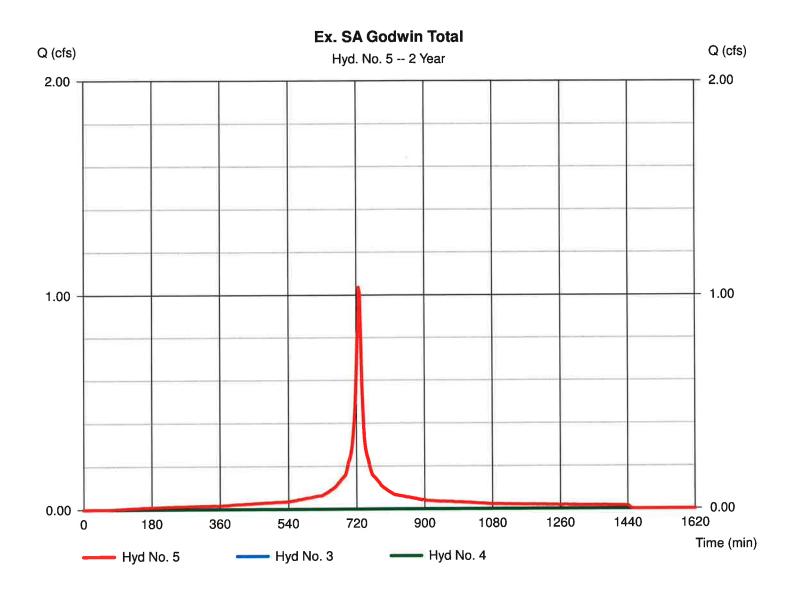

Tuesday, Nov 17, 2020

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 4

Ex. Study Area Godwin (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= 1440 min
Time interval	= 3 min	Hyd. volume	= 1 cuft
Drainage area	= 0.090 ac	Curve number	= 39
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= NOAA Atlas 14 Type-D.cds	Shape factor	= 484

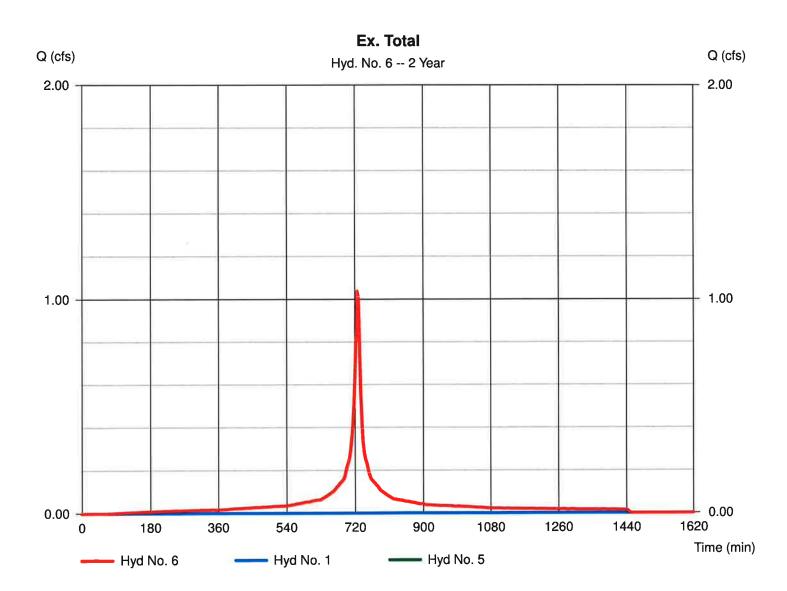


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 5

Ex. SA Godwin Total

Hydrograph type	= Combine	Peak discharge = 1.036 cfs
Storm frequency	= 2 yrs	Time to peak = 726 min
Time interval	= 3 min	Hyd. volume = 4,230 cuft
Inflow hyds.	= 3, 4	Contrib. drain. area = 0.490 ac

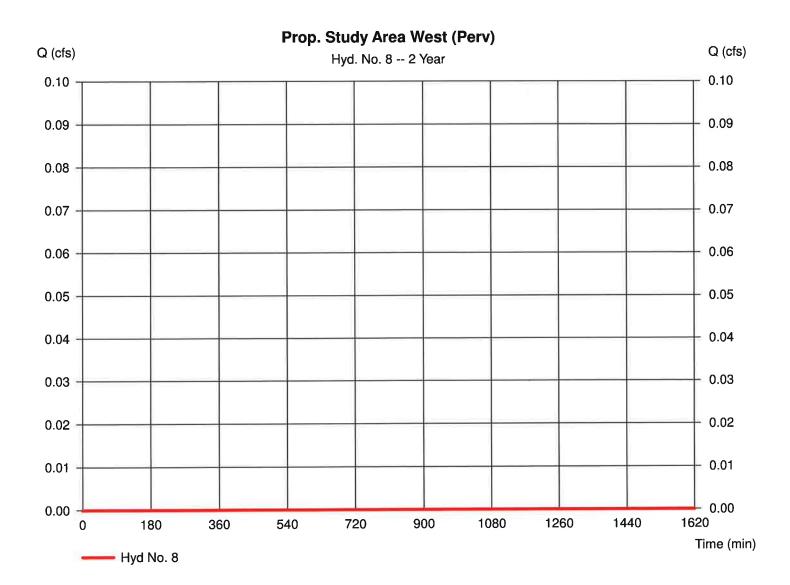


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 6

Ex. Total

Hydrograph type Storm frequency	Combine2 yrs	Peak discharge = 1.036 cfs Time to peak = 726 min	
Time interval	= 3 min	Hyd. volume = 4,230 cuft	
Inflow hyds.	= 1, 5	Contrib. drain. area = 0.020 ac	

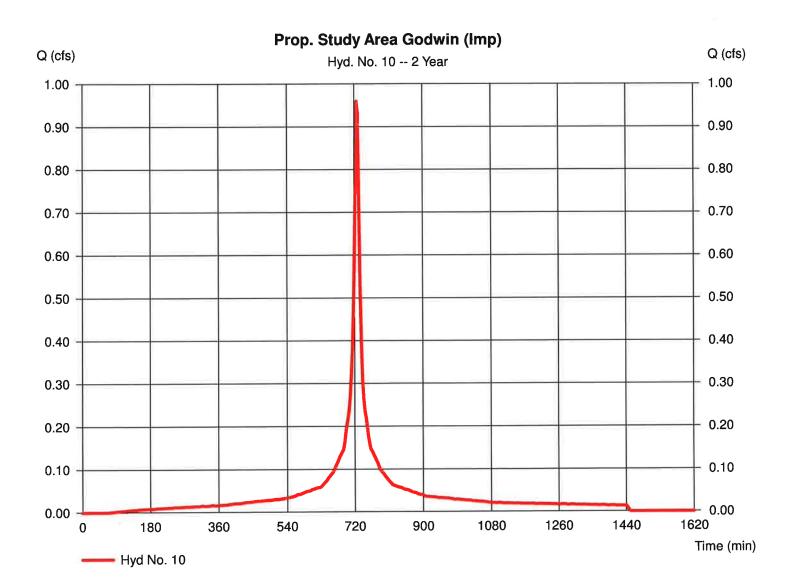


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 8

Prop. Study Area West (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= 1440 min
Time interval	= 3 min	Hyd. volume	= 0 cuft
Drainage area	= 0.010 ac	Curve number	= 39
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= NOAA Atlas 14 Type-D.cds	Shape factor	= 484

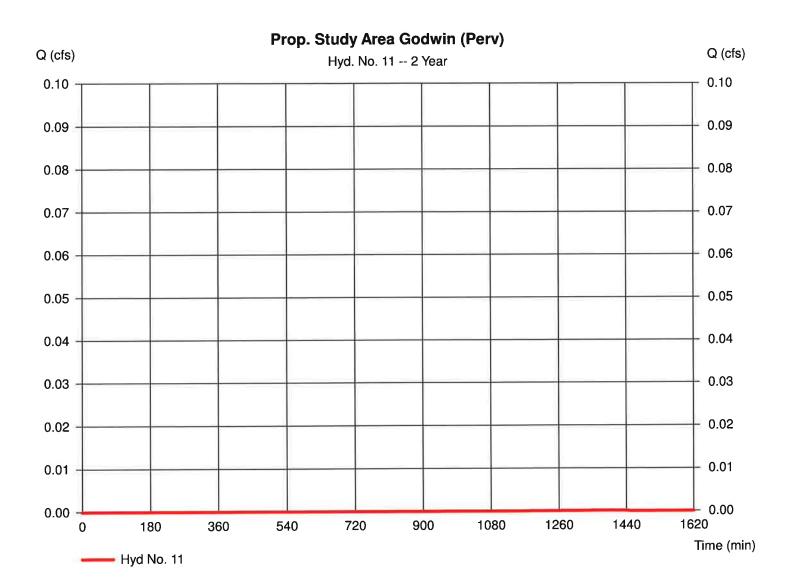


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 10

Prop. Study Area Godwin (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.959 cfs
Storm frequency	= 2 yrs	Time to peak	= 726 min
Time interval	= 3 min	Hyd. volume	= 3,912 cuft
Drainage area	= 0.370 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= NOAA Atlas 14 Type-D.cds	Shape factor	= 484

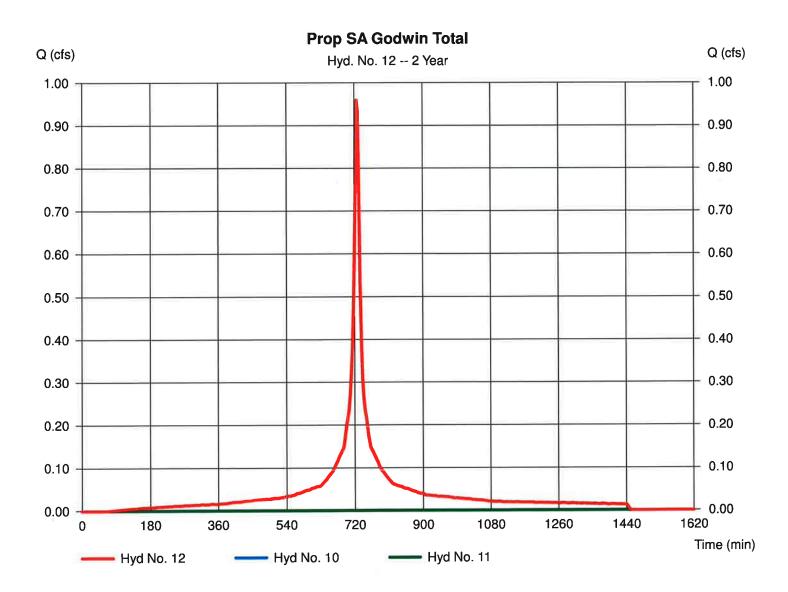


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 11

Prop. Study Area Godwin (Perv)

Hydrograph type	SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= 1440 min
Time interval	= 3 min	Hyd. volume	= 1 cuft
Drainage area	= 0.120 ac	Curve number	= 39
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	NOAA Atlas 14 Type-D.cds	Shape factor	= 484

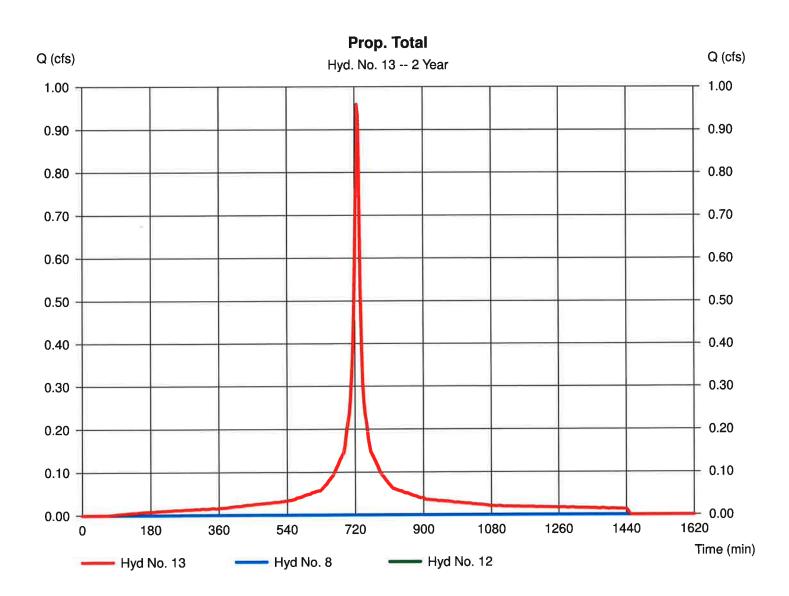


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 12

Prop SA Godwin Total

Hydrograph type	= Combine	Peak discharge = 0.959 cfs
Storm frequency	= 2 yrs	Time to peak = 726 min
Time interval	= 3 min	Hyd. volume = 3,913 cuft
Inflow hyds.	= 10, 11	Contrib. drain. area = 0.490 ac



Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 13

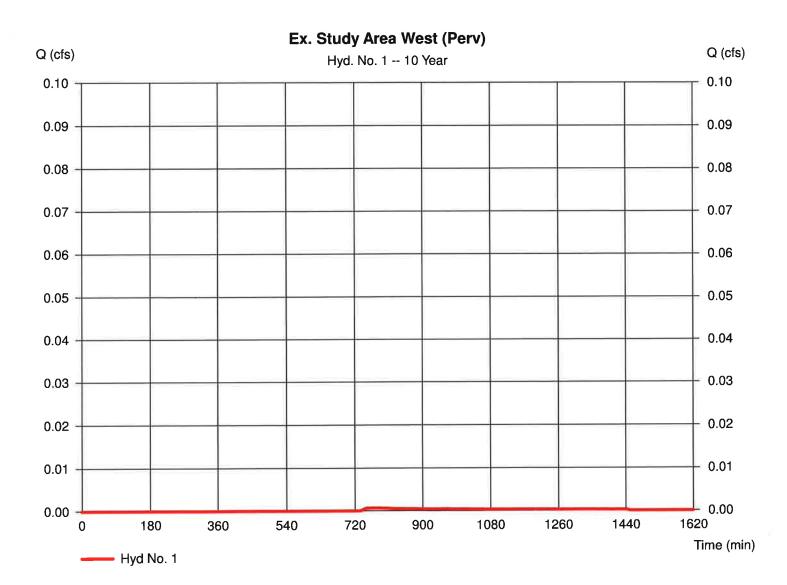
Prop. Total

Hydrograph type Storm frequency	Combine2 yrs	Peak discharge = 0.959 cfs Time to peak = 726 min	
Time interval	= 3 min	Hyd. volume = 3,913 cuft	
Inflow hyds.	= 8, 12	Contrib. drain. area = 0.010 ac	

13

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

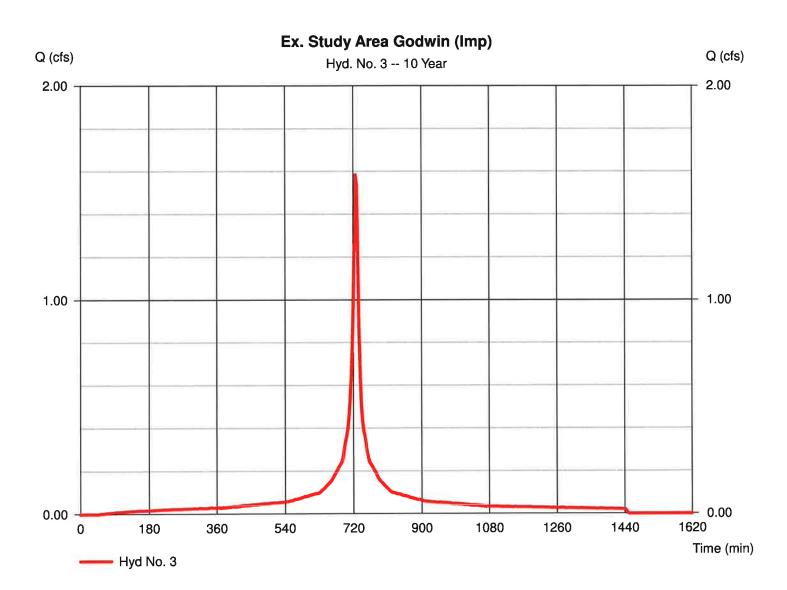

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	0.001	3	774	15		2000000		Ex. Study Area West (Perv)
3	SCS Runoff	1.584	3	726	6,579				Ex. Study Area Godwin (Imp)
4	SCS Runoff	0.003	3	774	66		s tadaax ≾		Ex. Study Area Godwin (Perv)
5	Combine	1.584	3	726	6,645	3, 4			Ex. SA Godwin Total
6	Combine	1.584	3	726	6,659	1, 5			Ex. Total
8	SCS Runoff	0.000	3	774	7				Prop. Study Area West (Perv)
10	SCS Runoff	1.465	3	726	6,086				Prop. Study Area Godwin (Imp)
11	SCS Runoff	0.004	3	774	88	(2222)	3 22020		Prop. Study Area Godwin (Perv)
12	Combine	1.465	3	726	6,173	10, 11			Prop SA Godwin Total
13	Combine	1.465	3	726	6,180	8, 12	(white the c		Prop. Total
202	0-11-05 Ex. I		 0-100.qr	 w	Return I	Period: 10	Year	Tuesday, I	l Nov 17, 2020

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 1

Ex. Study Area West (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.001 cfs
Storm frequency	= 10 yrs	Time to peak	= 774 min
Time interval	= 3 min	Hyd. volume	= 15 cuft
Drainage area	= 0.020 ac	Curve number	= 39
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.07 in	Distribution	= Custom
Storm duration	= NOAA Atlas 14 Type-D.cds	Shape factor	= 484

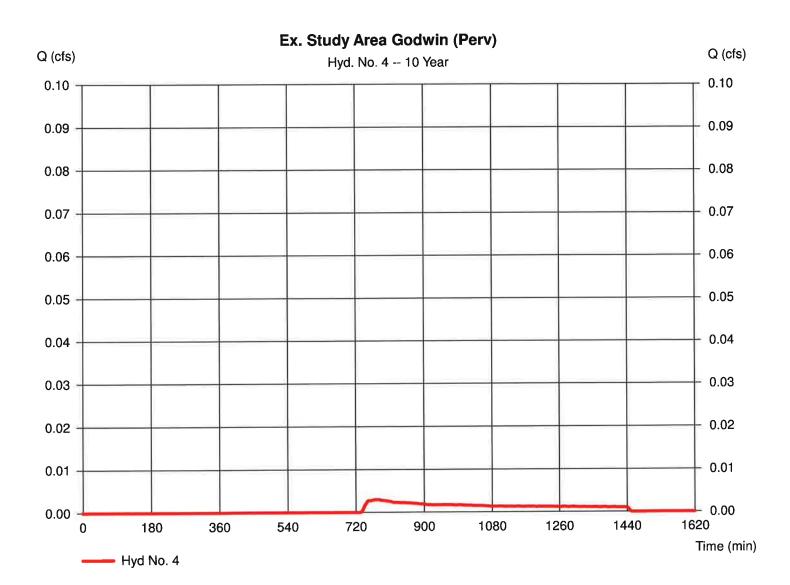


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

Ex. Study Area Godwin (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.584 cfs
Storm frequency	= 10 yrs	Time to peak	= 726 min
Time interval	= 3 min	Hyd. volume	= 6,579 cuft
Drainage area	= 0.400 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.07 in	Distribution	= Custom
Storm duration	NOAA Atlas 14 Type-D.cds	Shape factor	= 484

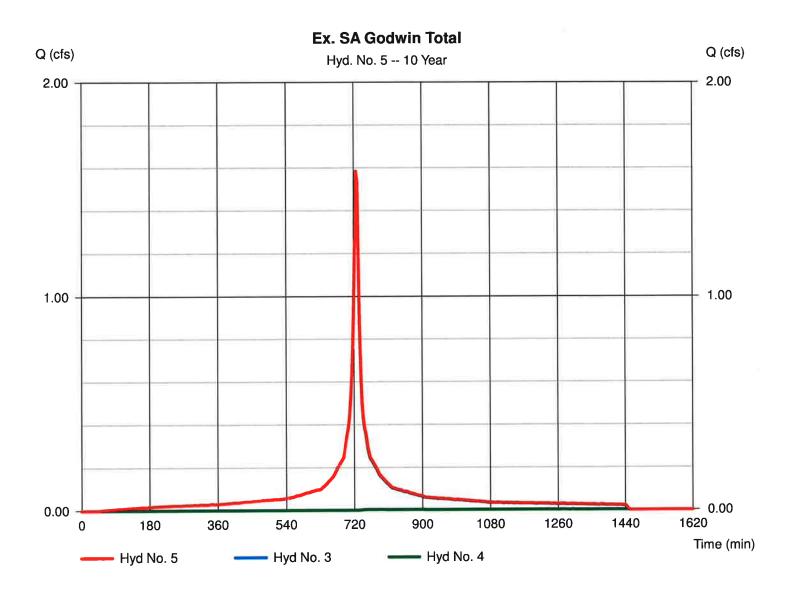


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 4

Ex. Study Area Godwin (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.003 cfs
Storm frequency	= 10 yrs	Time to peak	= 774 min
Time interval	= 3 min	Hyd. volume	= 66 cuft
Drainage area	= 0.090 ac	Curve number	= 39
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.07 in	Distribution	= Custom
Storm duration	= NOAA Atlas 14 Type-D.cds	Shape factor	= 484

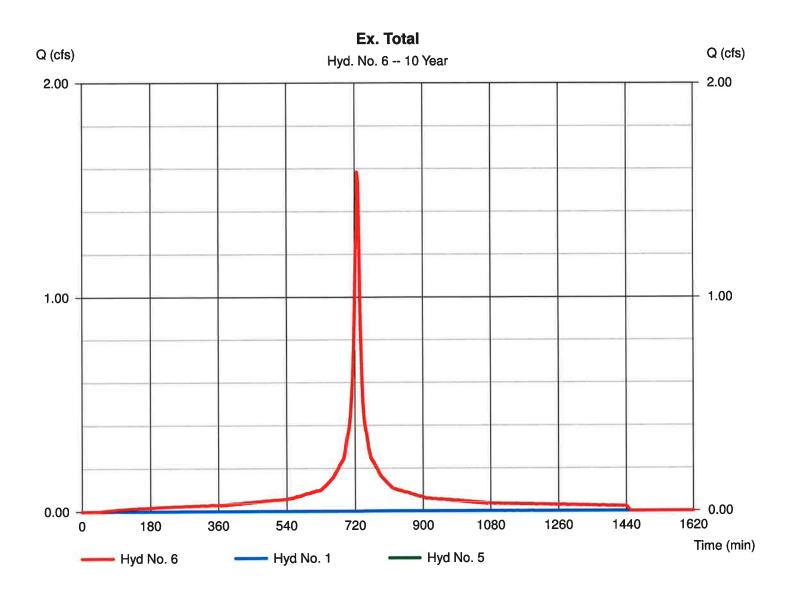


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 5

Ex. SA Godwin Total

Hydrograph type	= Combine	Peak discharge	= 1.584 cfs
Storm frequency	= 10 yrs	Time to peak	= 726 min
Time interval	= 3 min	Hyd. volume	= 6,645 cuft
Inflow hyds.	= 3, 4	Contrib. drain. area	a = 0.490 ac

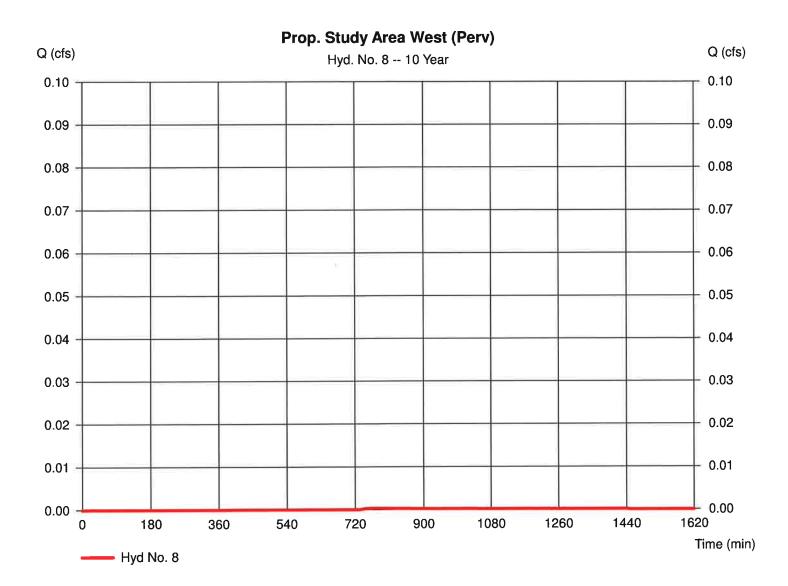


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 6

Ex. Total

	= Combine	Peak discharge	= 1.584 cfs
	= 10 yrs	Time to peak	= 726 min
Time interval	= 3 min = 1, 5	Hyd. volume Contrib. drain. area	= 6,659 cuft

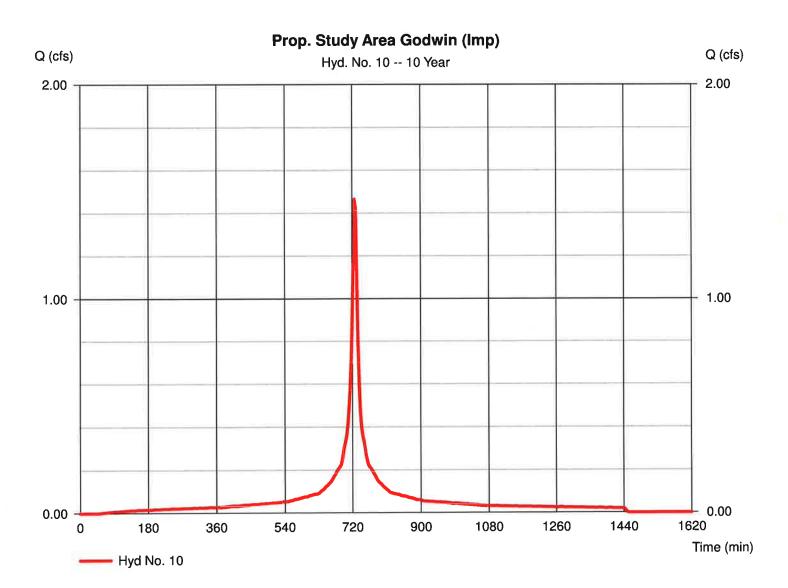


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 8

Prop. Study Area West (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 10 yrs	Time to peak	= 774 min
Time interval	= 3 min	Hyd. volume	= 7 cuft
Drainage area	= 0.010 ac	Curve number	= 39
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.07 in	Distribution	= Custom
Storm duration	= NOAA Atlas 14 Type-D.cds	Shape factor	= 484

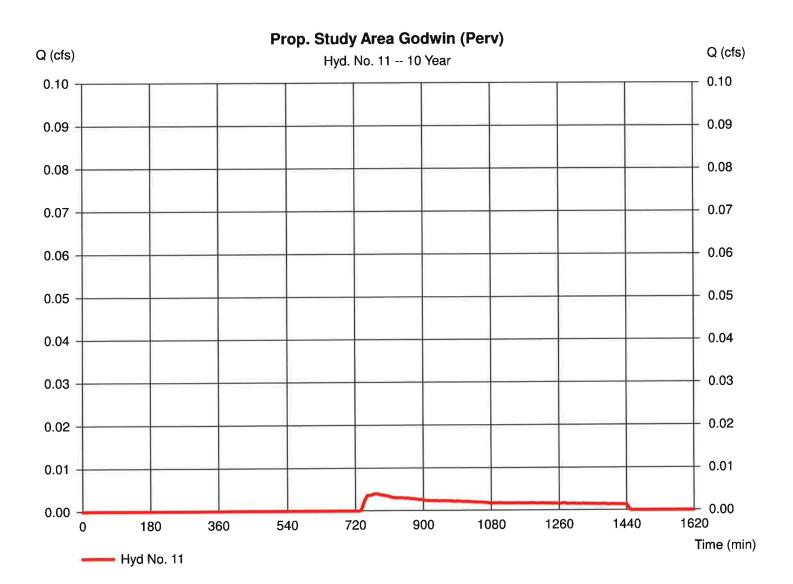

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 10

Prop. Study Area Godwin (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.465 cfs
Storm frequency	= 10 yrs	Time to peak	= 726 min
Time interval	= 3 min	Hyd. volume	= 6,086 cuft
Drainage area	= 0.370 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.07 in	Distribution	= Custom
Storm duration	NOAA Atlas 14 Type-D.cds	Shape factor	= 484

×

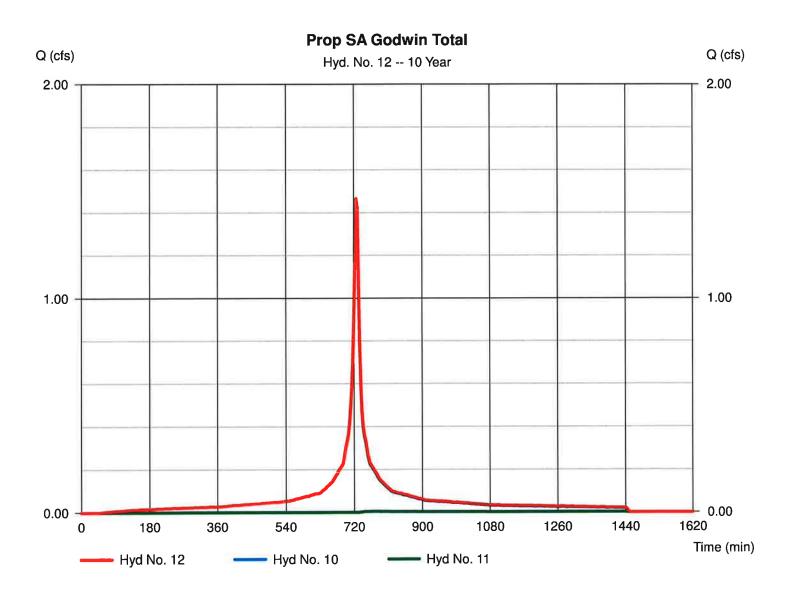


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 11

Prop. Study Area Godwin (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.004 cfs
Storm frequency	= 10 yrs	Time to peak	= 774 min
Time interval	= 3 min	Hyd. volume	= 88 cuft
Drainage area	= 0.120 ac	Curve number	= 39
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method		Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.07 in	Distribution	= Custom
Storm duration	= NOAA Atlas 14 Type-D.cds	Shape factor	= 484

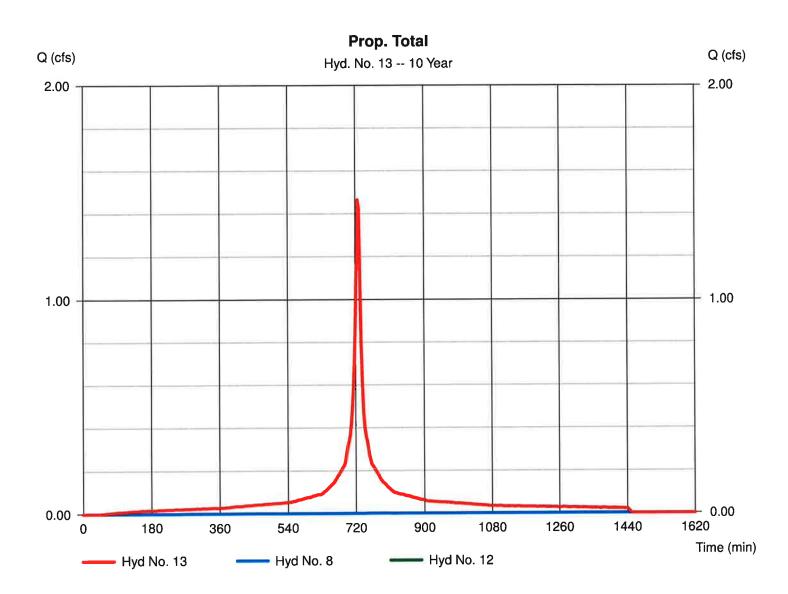

22

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 12

Prop SA Godwin Total

Hydrograph type	= Combine	Peak discharge = 1.465 cfs
Storm frequency	= 10 yrs	Time to peak = 726 min
Time interval	= 3 min	Hyd. volume = 6,173 cuft
Inflow hyds.	= 10, 11	Contrib. drain. area = 0.490 ac



Hydraflow Hydrographs by Intelisolve v9.1

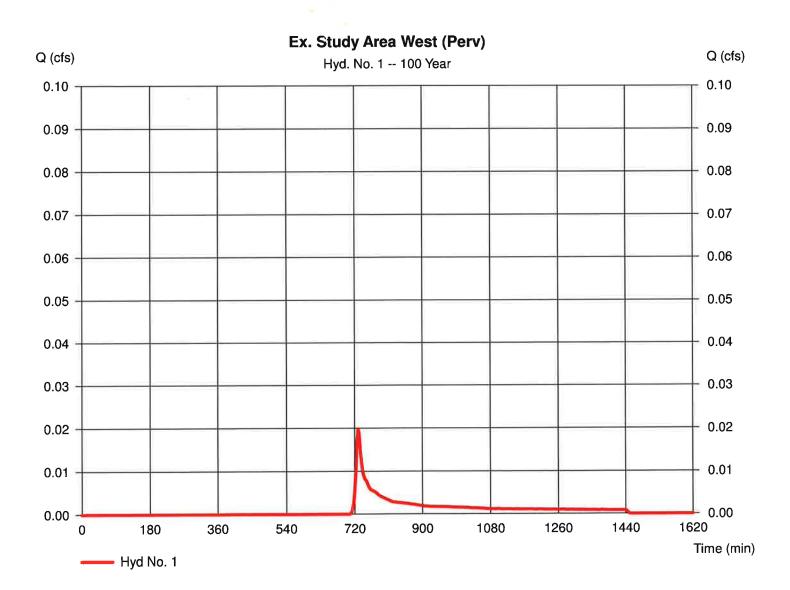
Hyd. No. 13

Prop. Total

Hydrograph type Storm frequency	Combine10 yrs	Peak discharge = 1.465 cfs Time to peak = 726 min
Time interval	= 3 min	Hyd. volume $= 6,180$ cuft
Inflow hyds.	= 8, 12	Contrib. drain. area $= 0.010$ ac

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

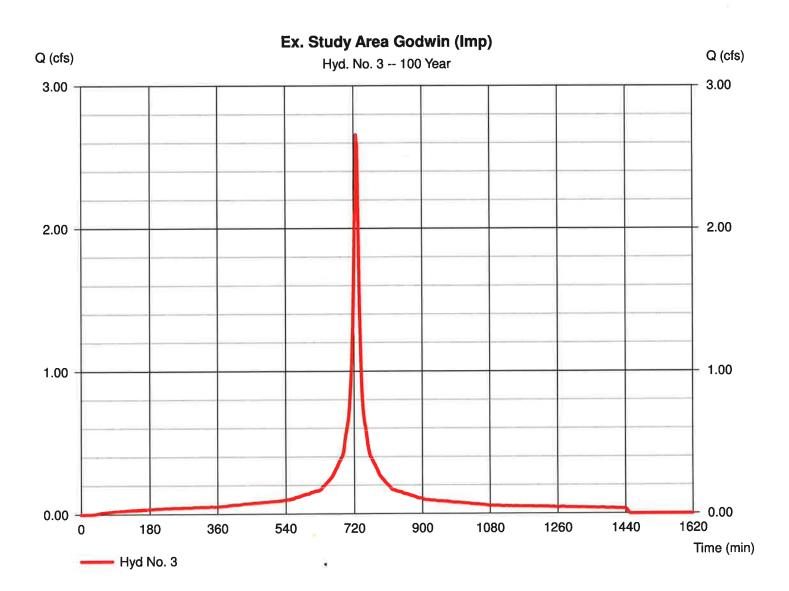

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	0.020	3	729	93				Ex. Study Area West (Perv)
3	SCS Runoff	2.656	3	726	11,203				Ex. Study Area Godwin (Imp)
4	SCS Runoff	0.089	3	729	417	101122			Ex. Study Area Godwin (Perv)
5	Combine	2.732	3	726	11,619	3, 4			Ex. SA Godwin Total
6	Combine	2.749	3	726	11,712	1, 5			Ex. Total
8	SCS Runoff	0.010	3	729	46	-			Prop. Study Area West (Perv)
10	SCS Runoff	2.457	3	726	10,363		(101102)		Prop. Study Area Godwin (Imp)
11	SCS Runoff	0.119	3	729	555			100000	Prop. Study Area Godwin (Perv)
12	Combine	2.558	3	726	10,918	10, 11			Prop SA Godwin Total
13	Combine	2.567	3	726	10,964	8, 12	Janaan.		Prop. Total
202	0-11-05 Ex. I		0-100 gr		Return F	Period: 100) Year	Tuesday N	l Nov 17, 2020

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 1

Ex. Study Area West (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.020 cfs
Storm frequency	= 100 yrs	Time to peak	= 729 min
Time interval	= 3 min	Hyd. volume	= 93 cuft
Drainage area	= 0.020 ac	Curve number	= 39
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 8.47 in	Distribution	= Custom
Storm duration	 NOAA Atlas 14 Type-D.cds 	Shape factor	= 484

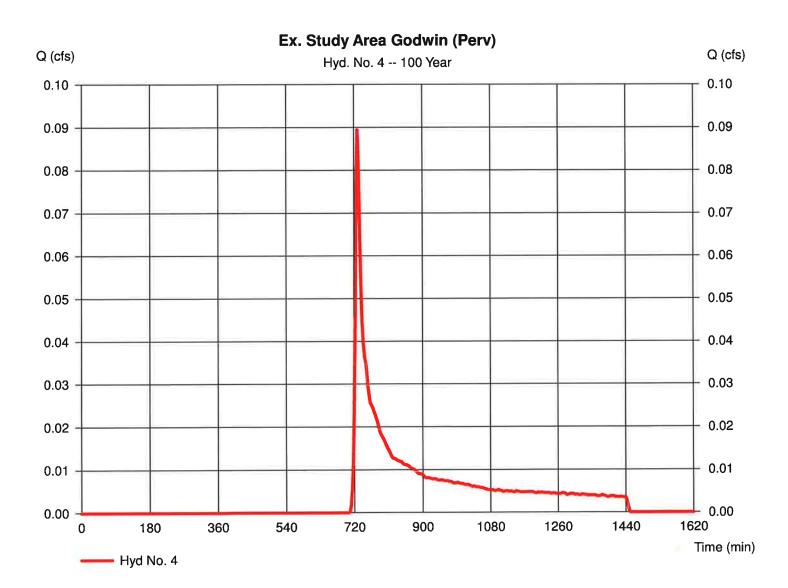


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

Ex. Study Area Godwin (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.656 cfs
Storm frequency	= 100 yrs	Time to peak	= 726 min
Time interval	= 3 min	Hyd. volume	= 11,203 cuft
Drainage area	= 0.400 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 8.47 in	Distribution	= Custom
Storm duration	= NOAA Atlas 14 Type-D.cds	Shape factor	= 484

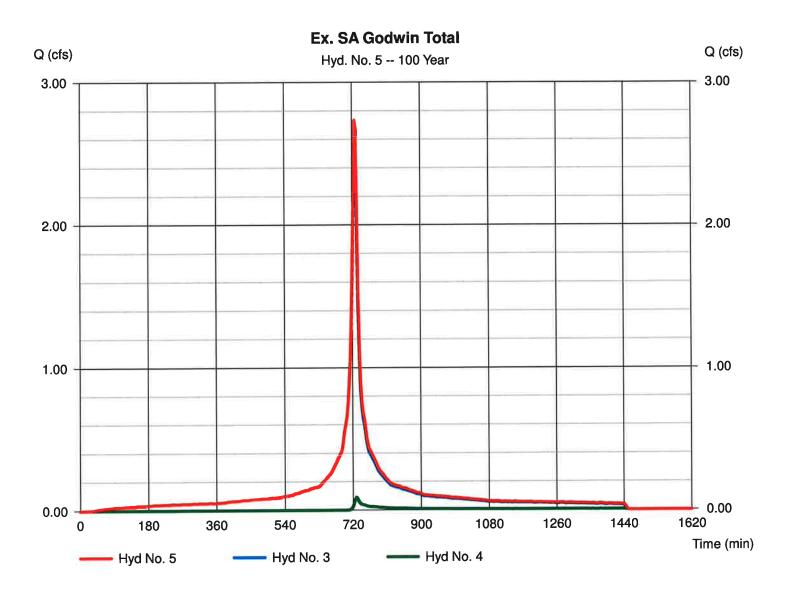


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 4

Ex. Study Area Godwin (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.089 cfs
Storm frequency	= 100 yrs	Time to peak	= 729 min
Time interval	= 3 min	Hyd. volume	= 417 cuft
Drainage area	= 0.090 ac	Curve number	= 39
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 8.47 in	Distribution	= Custom
Storm duration	= NOAA Atlas 14 Type-D.cds	Shape factor	= 484

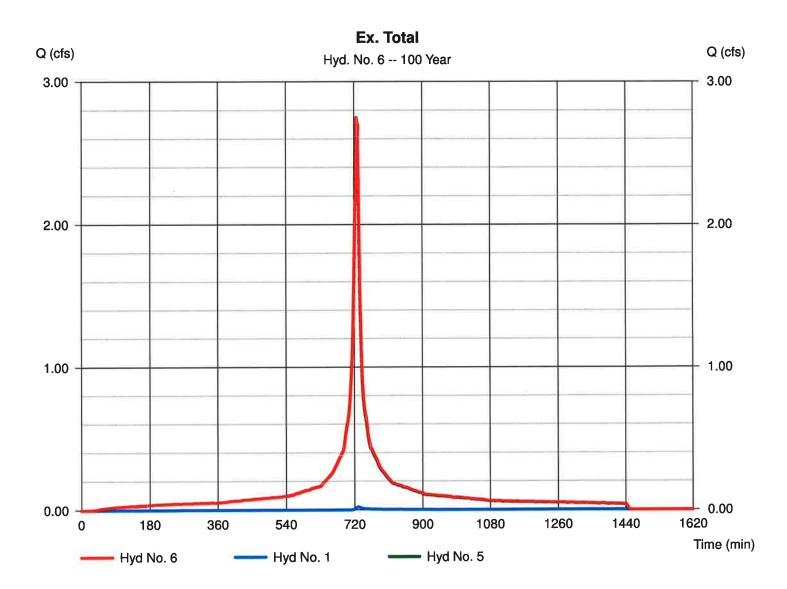


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 5

Ex. SA Godwin Total

Hydrograph type Storm frequency Time interval	= Combine = 100 yrs = 3 min - 3 4	Peak discharge Time to peak Hyd. volume Contrib, drain, area	= 2.732 cfs = 726 min = 11,619 cuft a = 0.490 ac
Inflow hyds.	= 3, 4	Contrib. drain. area	a = 0.490 ac

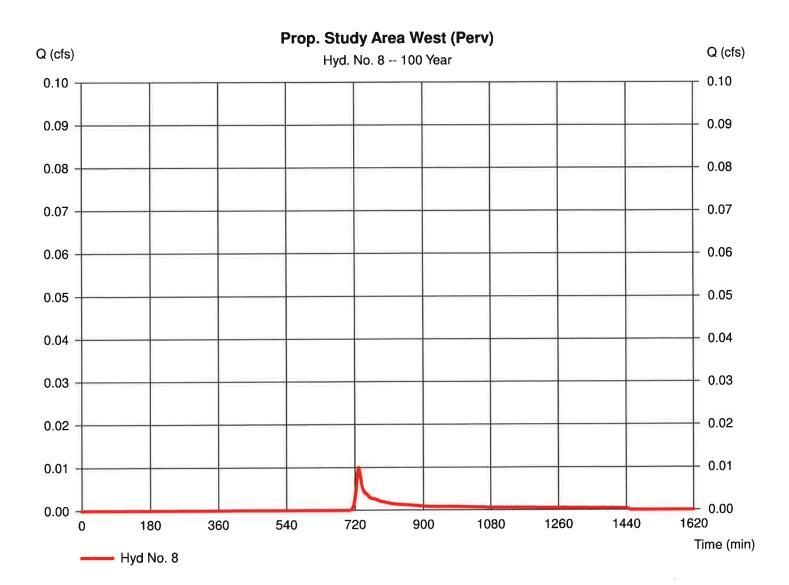


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 6

Ex. Total

Hydrograph type	= Combine	Peak discharge	= 2.749 cfs
Storm frequency	= 100 yrs	Time to peak	= 726 min
Time interval	= 3 min	Hyd. volume	= 11,712 cuft
Inflow hyds.	= 1, 5	Contrib. drain. area	a = 0.020 ac

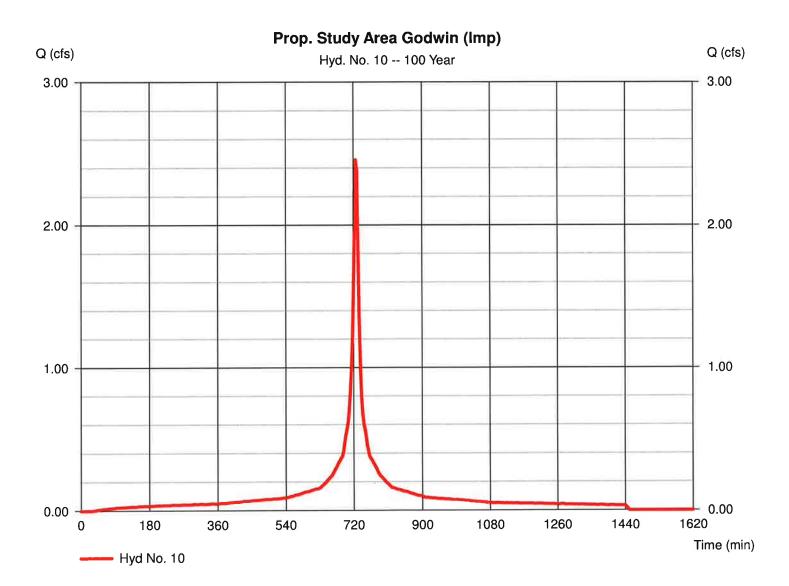


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 8

Prop. Study Area West (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.010 cfs
Storm frequency	= 100 yrs	Time to peak	= 729 min
Time interval	= 3 min	Hyd. volume	= 46 cuft
Drainage area	= 0.010 ac	Curve number	= 39
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 8.47 in	Distribution	= Custom
Storm duration	= NOAA Atlas 14 Type-D.cds	Shape factor	= 484

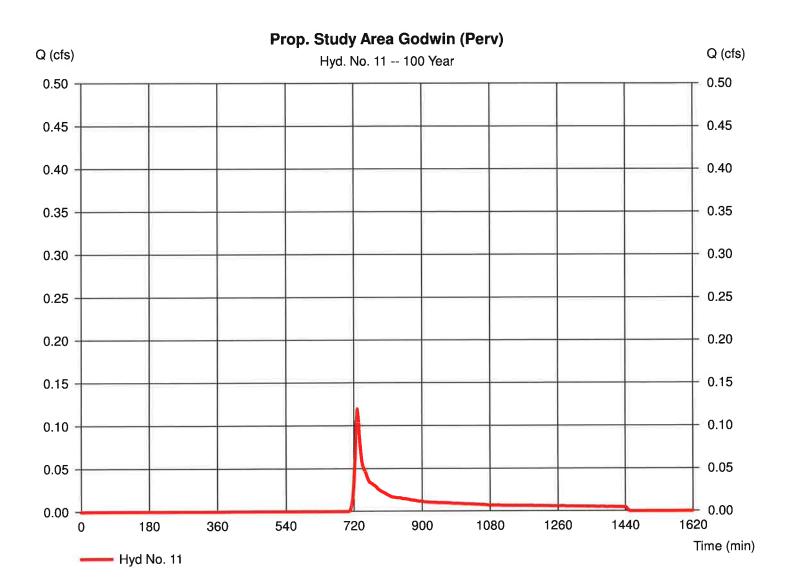


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 10

Prop. Study Area Godwin (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.457 cfs
Storm frequency	= 100 yrs	Time to peak	= 726 min
Time interval	= 3 min	Hyd. volume	= 10,363 cuft
Drainage area	= 0.370 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 8.47 in	Distribution	= Custom
Storm duration	= NOAA Atlas 14 Type-D.cds	Shape factor	= 484

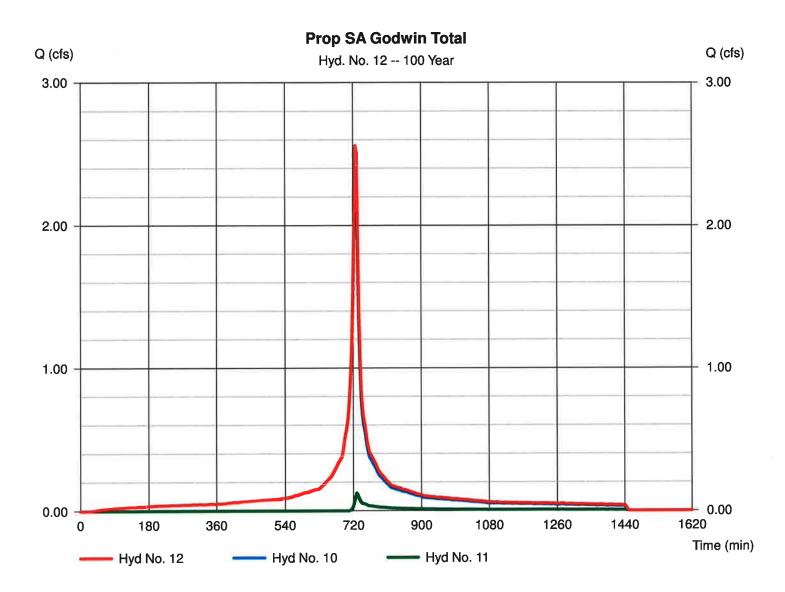


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 11

Prop. Study Area Godwin (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.119 cfs
Storm frequency	= 100 yrs	Time to peak	= 729 min
Time interval	= 3 min	Hyd. volume	= 555 cuft
Drainage area	= 0.120 ac	Curve number	= 39
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 8.47 in	Distribution	= Custom
Storm duration	= NOAA Atlas 14 Type-D.cds	Shape factor	= 484



Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 12

Prop SA Godwin Total

Hydrograph type Storm frequency	Combine100 yrs	Peak discharge = 2.558 cfs Time to peak = 726 min
Time interval	= 3 min	Hyd. volume = 10,918 cuft
Inflow hyds.	= 10, 11	Contrib. drain. area = 0.490 ac



Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 13

Prop. Total

Hydrograph type	= Combine	Peak discharge	= 2.567 cfs
Storm frequency	= 100 yrs	Time to peak	= 726 min
Time interval	= 3 min	Hyd. volume	= 10,964 cuft
Inflow hyds.	= 8, 12	Contrib. drain. area	a = 0.010 ac

Hydraflow Rainfall Report

Hydraflow Hydrographs by Intelisolve v9.1

	Intensity-Duration-Frequency Equation Coefficients (FHA)							
Period (Yrs)	В	D	E	(N/A)				
1	39.0824	9.5000	0.8528					
2	45.6943	10.7000	0.8185					
3	0.0000	0.0000	0.0000					
5	99.7061	14.8000	0.9304					
10	249.7597	21.8001	1.0961					
25	115.7547	14.9000	0.8980					
50	7.3699	0.1000	0.2544					
100	403.8513	25.1001	1.1108					

File name: TRENTON.idf

Intensity = B / (Tc + D)^E

Return Period		Intensity Values (in/hr)										
(Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	4.00	3.10	2.55	2.18	1.91	1.70	1.54	1.40	1.29	1.20	1.12	1.05
2	4.80	3.83	3.21	2.77	2.45	2.20	2.00	1.84	1.70	1.59	1.49	1.40
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.20	5.03	4.24	3.67	3.24	2.90	2.63	2.40	2.22	2.06	1.92	1.80
10	6.80	5.63	4.80	4.17	3.69	3.30	2.98	2.72	2.50	2.31	2.14	2.00
25	7.89	6.45	5.47	4.76	4.23	3.80	3.46	3.17	2.93	2.73	2.55	2.40
50	4.87	4.09	3.69	3.44	3.25	3.10	2.98	2.88	2.80	2.72	2.66	2.60
100	9.20	7.76	6.69	5.87	5.22	4.70	4.27	3.91	3.60	3.33	3.10	2.90

Tc = time in minutes. Values may exceed 60.

	Rainfall Precipitation Table (in)									
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr		
SCS 24-hour	0.00	3.34	0.00	0.00	5.07	6.28	0.00	8.47		
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Custom	1.25	3.34	0.00	0.00	5.07	6.28	0.00	8.47		

Precip. file name: Bergen County.pcp

Hydraflow Table of Contents

Hydraflow Hydrographs by Intelisolve v9.1

Tuesday, Nov 17, 2020

Watershed Model Schematic	1
Hydrograph Return Period Recap	2

2 - Year

Summary Report	3
Hydrograph Reports	4
Hydrograph No. 1, SCS Runoff, Ex. Study Area West (Perv)	4
Hydrograph No. 3, SCS Runoff, Ex. Study Area Godwin (Imp)	5
Hydrograph No. 4, SCS Runoff, Ex. Study Area Godwin (Perv)	6
Hydrograph No. 5, Combine, Ex. SA Godwin Total	7
Hydrograph No. 6, Combine, Ex. Total	8
Hydrograph No. 8, SCS Runoff, Prop. Study Area West (Perv)	9
Hydrograph No. 10, SCS Runoff, Prop. Study Area Godwin (Imp) 1	
Hydrograph No. 11, SCS Runoff, Prop. Study Area Godwin (Perv) 1	11
Hydrograph No. 12, Combine, Prop SA Godwin Total 1	2
Hydrograph No. 13, Combine, Prop. Total 1	3

10 - Year

Immary Report	14
/drograph Reports	
Hydrograph No. 1, SCS Runoff, Ex. Study Area West (Perv)	15
Hydrograph No. 3, SCS Runoff, Ex. Study Area Godwin (Imp)	16
Hydrograph No. 4, SCS Runoff, Ex. Study Area Godwin (Perv)	17
Hydrograph No. 5, Combine, Ex. SA Godwin Total	18
Hydrograph No. 6, Combine, Ex. Total	
Hydrograph No. 8, SCS Runoff, Prop. Study Area West (Perv)	20
Hydrograph No. 10, SCS Runoff, Prop. Study Area Godwin (Imp)	21
Hydrograph No. 11, SCS Runoff, Prop. Study Area Godwin (Perv)	22
Hydrograph No. 12, Combine, Prop SA Godwin Total	23
Hydrograph No. 13, Combine, Prop. Total	24

100 - Year

Summary Report	25
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Ex. Study Area West (Perv)	26
Hydrograph No. 3, SCS Runoff, Ex. Study Area Godwin (Imp)	
Hydrograph No. 4, SCS Runoff, Ex. Study Area Godwin (Perv)	28
Hydrograph No. 5, Combine, Ex. SA Godwin Total	
Hydrograph No. 6, Combine, Ex. Total	
Hydrograph No. 8, SCS Runoff, Prop. Study Area West (Perv)	
Hydrograph No. 10, SCS Runoff, Prop. Study Area Godwin (Imp)	
Hydrograph No. 11, SCS Runoff, Prop. Study Area Godwin (Perv)	33
Hydrograph No. 12, Combine, Prop SA Godwin Total	34
Hydrograph No. 13, Combine, Prop. Total	35
IDF Report	36

STORMWATER COLLECTION SYSTEM CALCULATIONS (PIPE SIZING)

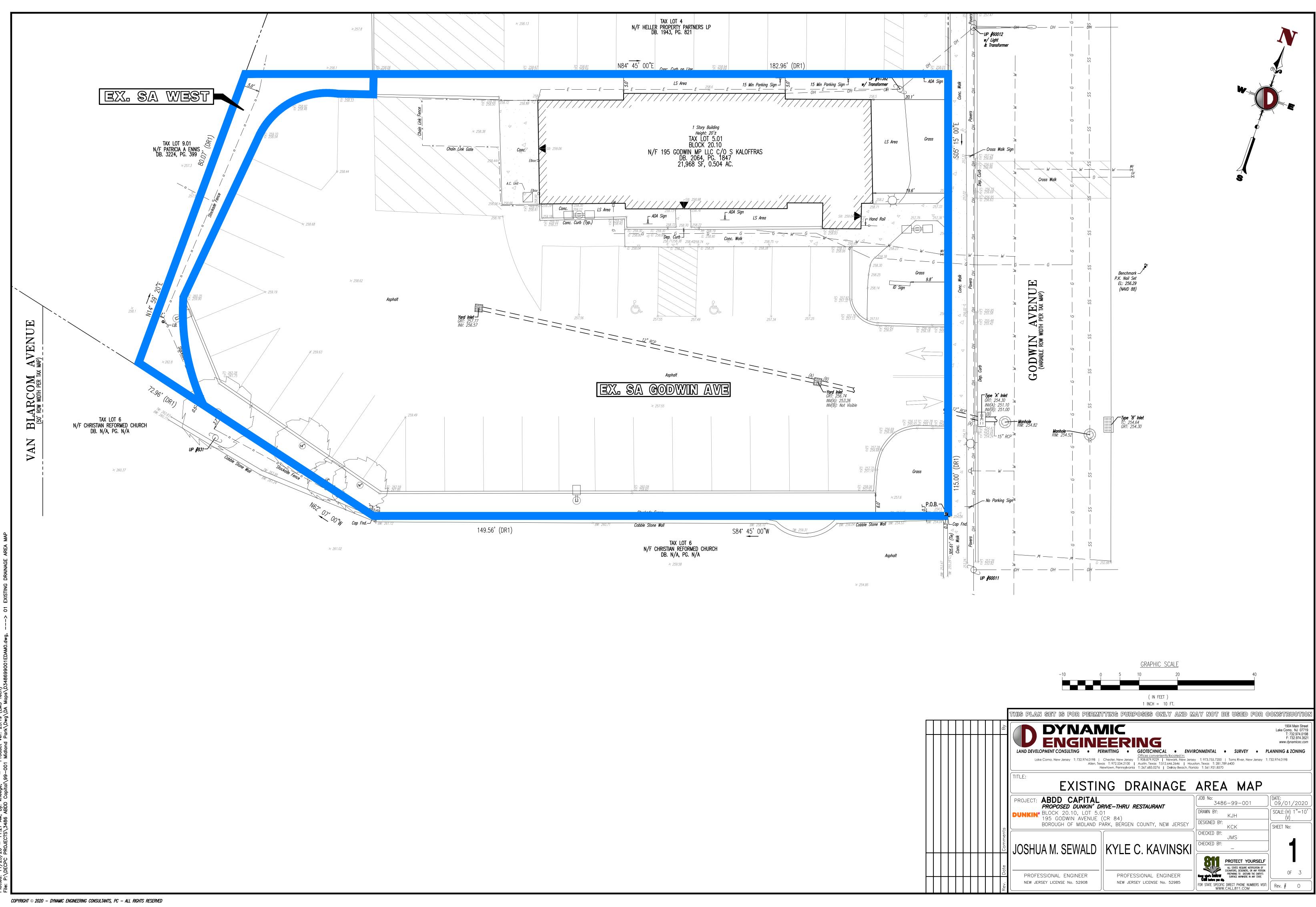
DYNAMIC ENGINEERING

Inlet Area Summary and Average Coefficient (C) Calculations

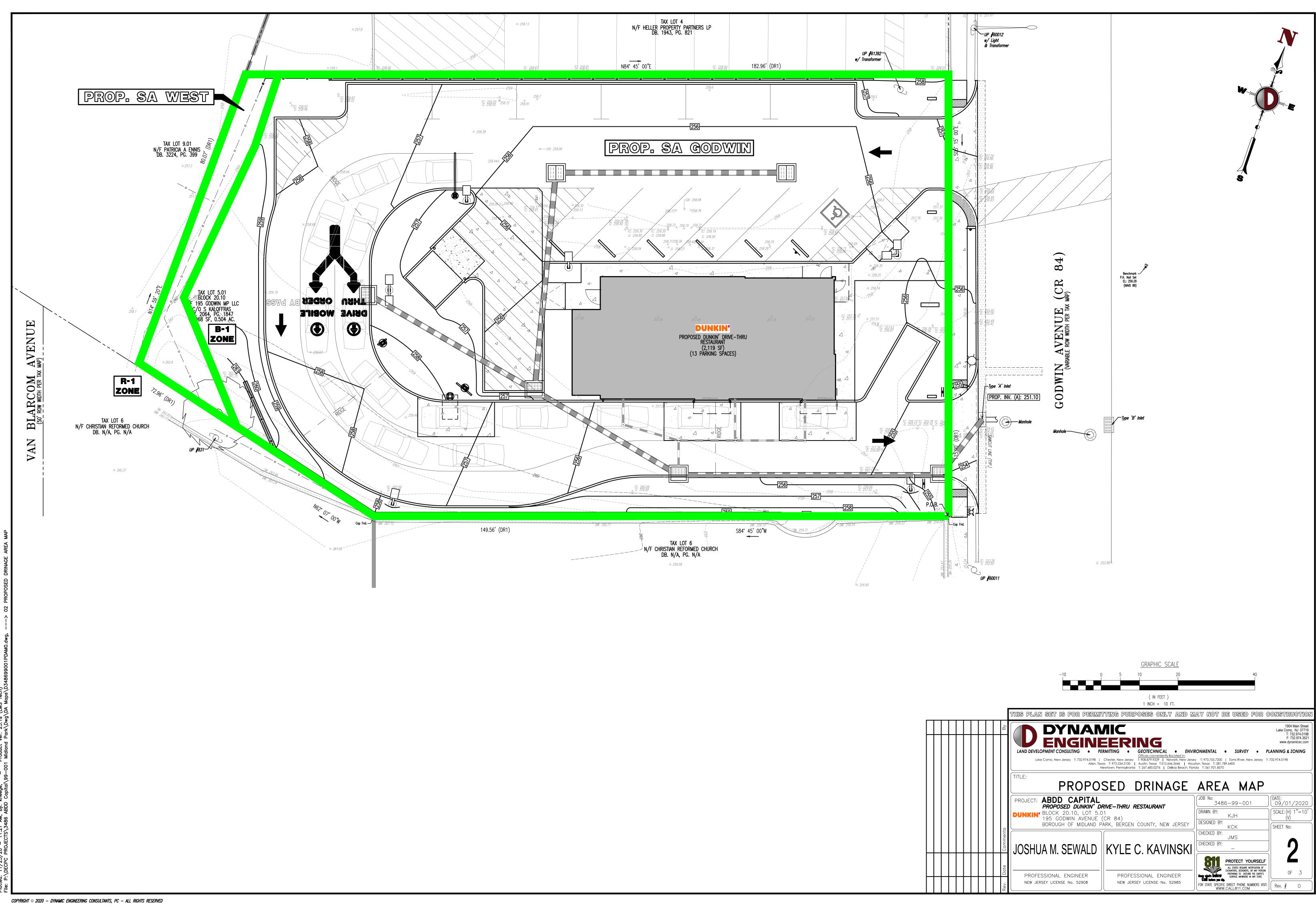
Project:ABDD CapitalJob #:3486-99-001Location:Midland Park

Computed By: MSA Checked By: KCK Date: 11/17/2020

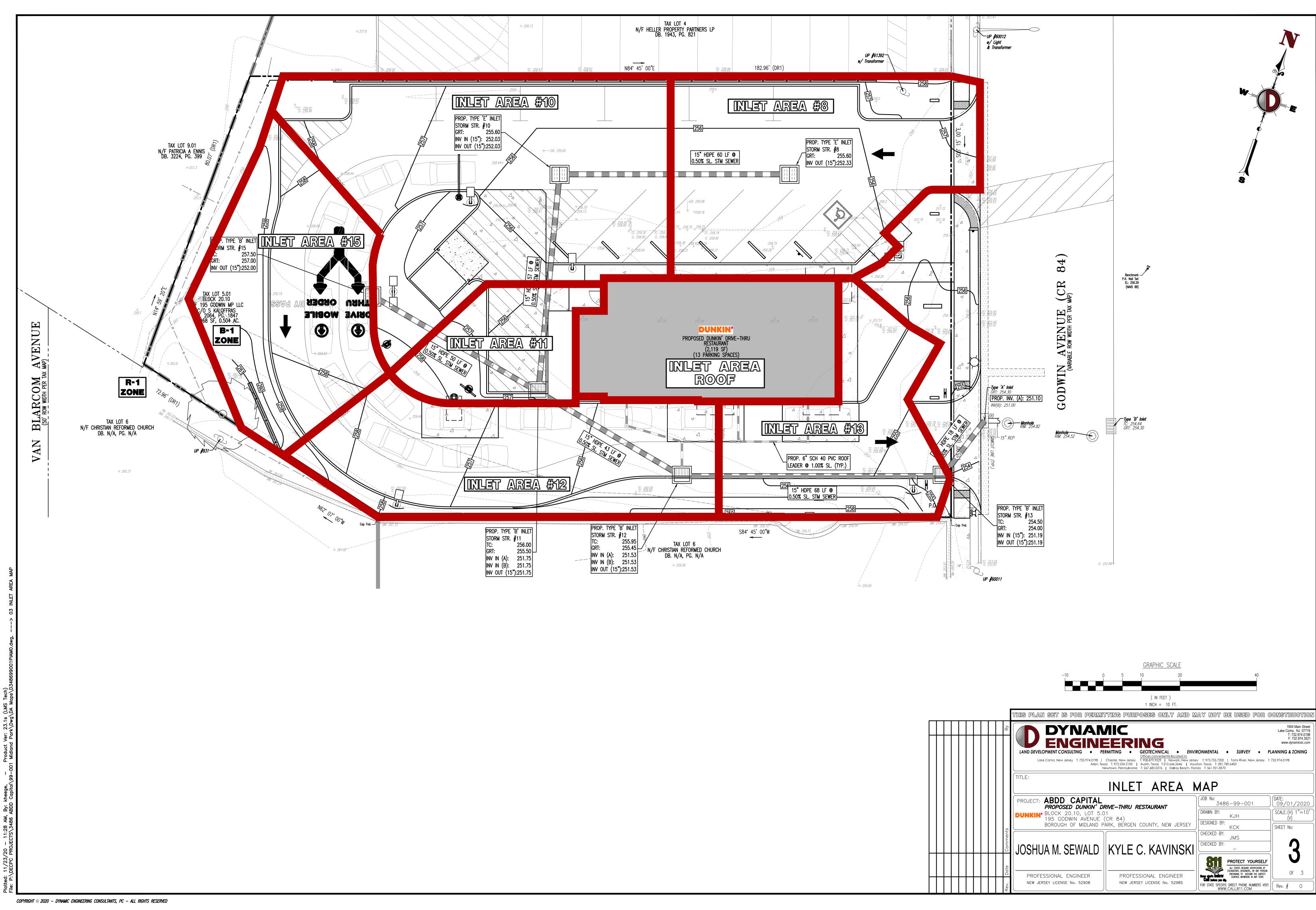
Drainage Area	Impervious Area (sf)	Coefficient (C) Used			Average Coefficient (C) Used	Total Area (SF)	Total Area (acres)
Inlet Area 8	3448	0.95	288	0.35	0.90	3736	0.09
Inlet Area 10	4227	0.95	947	0.35	0.84	5174	0.12
Inlet Area 11	554	0.95	659	0.35	0.62	1213	0.03
Inlet Area 15	1690	0.95	1145	0.35	0.71	2835	0.07
Inlet Area 12	2520	0.95	627	0.35	0.83	3147	0.07
Inlet Area 13	1455	0.95	806	0.35	0.74	2261	0.05
Inlet Area Roof	2119	0.95	0	0.35	0.95	2119	0.05


Stormwater Collection System Calculations Project: ADBB Capital Job #: 3486-99-001 Checked By: KCK Location: Midland Park Date: 11/17/2020

Design Storm: 25-year


NOTES: 1) Design method used is Rational Method, unless otherwise noted. 2) Refer to Weighted Runoff Coefficient table for calculation of incremental areas and C values

PIPE S	ECTION	SUBCATCHMENT AREA	INCR	EMENTAL	CUMULATIVE		TIME OI CENTRA		1	PEAK R	UNOFF	PIP	ING INF	UT	Р	IPING DA	ГA
FROM	то	Area (Acres)	"C"	A x C Ac	A x C (acres)	Tc to Inlet (min)	Tc in Pipe (min.)	Final Tc (min)	(In/Hr)	Q to Inlet (CFS)	Q cum. for Pipe (CFS)	Dia. (lo)	Length (Ft)	Man. "n"	Slope (fvft)	Pipe Capacity (cfs)	Pipe Velocity (fps)
Inlet 8	Inlet 10	0.09	0.90	0.08	0.08	10.00	0.27	10.00	6.80	0.54	0.54	15	60.0	0.013	0.0050	4.57	3.73
Inlet 10	Inlet I I	0.12	0.84	0.10	0.18	10.00	0.25	10.27	6.80	0.68	1.22	15	57.0	0.013	0.0050		
Inlet 15	Inlet 11	0.07	0.71	0.05	0.05	10.00	0.22	10.00	6.80	0.34	0.34	15	50.0	0.013	0.0050	4.57	3.73
Inlet 11	Inlet 12	0.03	0.62	0.02	0.25	10.00	0.19	10.52	6.68	0.13	1.67	15	43.0	0.013	0.0050	4.57	3.73
Roof	Inlet 12	0.05	0.95	0.05	0.05	10.00	0.23	10.00	6.80	0.34	0.34	6	52.0	0.010	0.0100	0.73	3.72
Inlet 12	Inlet 13	0.07	0.83	0.06	0.36	10.00	0.30	10.71	6.68	0.40	2.40	15	68.0	0.013	0.0050	4.57	3.73
Inlet 13	Ex Inlet	0.05	0.74	0.04	0.40	10.00	0.08	11.01	6.56	0.26	2.62	15	18.0	0.013	0.0050	4.57	3.73


DRAINAGE AREA MAPS

Ver: 23.1s (LMS T d Park\Dwg\DA Ma lot d , By: kheege, ABDD Capital\ /20 - 11:27 AM, PROJECTS\3486 A 11/23/ DECPC ÿć

Ver: 23.1s (LMS Tech) Park\Dwg\DA Maps\E lot d , By: kheege, ABDD Capital\ /20 - 11:27 AM, PROJECTS\3486 A 11/23/ DECPC ÿć

SANITARY SEWER & POTABLE WATER ENGINEER'S REPORT

for

ABDD Capital Proposed Dunkin' Drive-Thru Restaurant

Block 20.10, Lot 5.01 195 Godwin Avenue (C.R. 84) Borough of Midland Park, Bergen County, NJ

Prepared by:

1904 Main Street Lake Como, NJ 07719 (732) 974-0198

Joshu'a M. Sewald, PE, PP NJ Professional Engineer License #52908

> November 2020 DEC # 3486-99-001

INTRODUCTION

The subject property is known as Block 20.10, Lot 5.01 as shown on the Tax Maps of the Borough of Midland Park, Bergen County, New Jersey. The parcel consists of approximately 0.5 acres and is located within the B-1 (Business Retail) Zone. Under existing conditions, the parcel is developed with a Friendly's Restaurant.

The site is bound to the north by commercial uses, to the south by a religious use with commercial & residential uses beyond, to the east by Godwin Avenue with commercial uses beyond, and to the west by residential uses.

The proposed development consists of the demolition of the existing Friendly's Restaurant and the construction of the proposed 2,119 SF Dunkin' Drive-Thru Restaurant. Additional improvements include driveways, parking areas, landscaping, lighting, stormwater management facilities and other related site improvements as shown on the accompanying engineering drawings.

PROPOSED SANITARY SEWER SYSTEM

The proposed sanitary sewer service will be provided to the Dunkin' Drive-Thru Restaurant building via approximately 54 LF of 4-inch, SDR-35 PVC lateral service connection at a 2.08% minimum slope to the existing sewer main within Godwin Avenue (CR 84).

SEWERAGE FLOW CALCULATION

Sanitary sewage flow estimation has been calculated utilizing the sanitary sewer design flow calculations listed under NJAC 7:14A-23.3(a). Considering the above, the proposed estimated daily sewerage demand is as follows:

Restaurant (24-Hour Service): 50 gallons per seat

Average Daily Flow in Gallons Per Day (GPD)

Proposed Dunkin' Drive-Thru Restaurant: 15 Seats x (50 GPD / 1 Seat) = 750 GPD

Proposed Total Sewage Flow = 750 GPD

SANITARY SEWER PIPE DESIGN

Per NJDEP regulations, the criteria for establishing the size of gravity sanitary sewer is to convey two times the average daily flow with the pipe flowing half full. Utilizing Manning's Equation with a roughness coefficient of 0.010 for PVC pipe, the following is the minimum capacity of the proposed sanitary sewer lateral:

Pipe Size	Slope	Roughness (n)	Capacity at ½ Full	2 X ADF
4" PVC	2.08%	0.010	115,618 GPD	1,500 GPD

The proposed 4-inch PVC sanitary sewer lateral can easily convey two times the proposed average daily flow proposed by the onsite development while flowing half full. The total flow from the proposed Dunkin' Drive-Thru Restaurant will constitute less than 1.00% of the line's total capacity.

PROPOSED WATER SYSTEM

The proposed water service for the Dunkin' Drive-Thru Restaurant will be provided via connection to the existing water line located near the Godwin Avenue (CR 84) right-of-way. The on-site service will be provided by a 2" Domestic Water Service to the proposed building.

DOMESTIC WATER DEMAND CALCULATION

As specified in NJAC 7:10-12.6(2)2, Table 1, the NJDEP Standard for Domestic Water Demand is as follows:

Restaurant - 10 gallons per day per seat

Demand projections shall be multiplied by a factor of 1, 2, or 3 reflecting the hours of operation as follows:

- One to six hours: Factor of 1
- Seven to twelve hours: Factor of 2
- Greater than twelve hours: Factor of 3

Average Daily Flow in Gallons Per Day (GPD)

Proposed Dunkin' Drive-Thru Restaurant:

• (15 Seats) x (10 GPD/1 Seat) x (3) = 450 GPD

Total Domestic Water Demand = 450 GPD

APPENDIX

.4

*

CAPACITY OF CIRCULAR PIPE FLOWING 1/2 FULL

4

.....

Capacity of Circular Pipe Flowing 1/2 Full Project: Proposed Commercial Development Job #: 3486-99-001 Location: Midland Park, NJ Computed By: MSP Checked By: KK Date: 11/19/2020

PIPE DESCRIPTION	SLOPE (%)	SIZE (IN)	MANNING'S COEFFICIENT (n)	VELOCITY (FT/S)	CAPACITY (CFS)	CAPACITY (GPD)	CAPACITY (MGD)
4" PVC	2.080%	4	0.010	4.10	0.18	115,618	0.12
Variables Defined Q=Capacity of Pipe (CFS V=Velocity in Pipe Section R=Hydraulic Radius of P S=Slope of Pipe Section D=Dlameter of Pipe (FT) d=Depth of Flow in Pipe n=Manning's Coefficient Wp=Wetted Perimeter (F	on (FT/S) Pipe Section (FT/FT) (FT)			Manning's Coefficient 0.013			0.12
Equations used: Q=VA V=(1.49/n)*R^(2/3)*S^(1/2) Q=(1.49/n)*R^(2/3)*S^(1/2) Utilizing Appendix 16.A fro The following equations with A=(m*D^2/4)*0.5=0.3927* R=A/Wp=0.3927*D^2/((2*)	2) 2)*A m the Civil Engine ere utilized to calc D^2	ulate the Hydraulic R	ual-Seventh Edition adius and Area of a	, by Micheal Lindebu Circular Pipe Sectior	rg, Copyright 1999 flowing 1/2 full		
Therefore: Q=(1.49/n)*(0.25*D)^(2/3)* V=(1.49/n)*(0.25*D)^(2/3)*		D^2)					
Unit Conversion Equations 1 Cubic Foot=7.4805 Gall 1 Day = 86,400 Seconds Therefore: Cubic Foot Second		86,400 Seconds 1 Day	x -	7.4805 Gallons 1 Cubic Foot	= -	Gallon Day	
Gallon Day	x	1 Million Gallons 1,000,000 Gallons		Million Gallons Day		(2019) 	